Summary
Small-signal modeling is a common analysis technique in electronics engineering used to approximate the behavior of electronic circuits containing nonlinear devices with linear equations. It is applicable to electronic circuits in which the AC signals (i.e., the time-varying currents and voltages in the circuit) are small relative to the DC bias currents and voltages. A small-signal model is an AC equivalent circuit in which the nonlinear circuit elements are replaced by linear elements whose values are given by the first-order (linear) approximation of their characteristic curve near the bias point. Many of the electrical components used in simple electric circuits, such as resistors, inductors, and capacitors are linear. Circuits made with these components, called linear circuits, are governed by linear differential equations, and can be solved easily with powerful mathematical frequency domain methods such as the Laplace transform. In contrast, many of the components that make up electronic circuits, such as diodes, transistors, integrated circuits, and vacuum tubes are nonlinear; that is the current through them is not proportional to the voltage, and the output of two-port devices like transistors is not proportional to their input. The relationship between current and voltage in them is given by a curved line on a graph, their characteristic curve (I-V curve). In general these circuits don't have simple mathematical solutions. To calculate the current and voltage in them generally requires either graphical methods or simulation on computers using electronic circuit simulation programs like SPICE. However in some electronic circuits such as radio receivers, telecommunications, sensors, instrumentation and signal processing circuits, the AC signals are "small" compared to the DC voltages and currents in the circuit. In these, perturbation theory can be used to derive an approximate AC equivalent circuit which is linear, allowing the AC behavior of the circuit to be calculated easily.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.