In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups.
The monogenic semigroup generated by the singleton set {a} is denoted by . The set of elements of is {a, a2, a3, ...}. There are two possibilities for the monogenic semigroup :
am = an ⇒ m = n.
There exist m ≠ n such that am = an.
In the former case is isomorphic to the semigroup ({1, 2, ...}, +) of natural numbers under addition. In such a case, is an infinite monogenic semigroup and the element a is said to have infinite order. It is sometimes called the free monogenic semigroup because it is also a free semigroup with one generator.
In the latter case let m be the smallest positive integer such that am = ax for some positive integer x ≠ m, and let r be smallest positive integer such that am = am+r. The positive integer m is referred to as the index and the positive integer r as the period of the monogenic semigroup . The order of a is defined as m+r−1. The period and the index satisfy the following properties:
am = am+r
am+x = am+y if and only if m + x ≡ m + y (mod r)
= {a, a2, ... , am+r−1}
Ka = {am, am+1, ... , am+r−1} is a cyclic subgroup and also an ideal of . It is called the kernel of a and it is the minimal ideal of the monogenic semigroup .
The pair (m, r) of positive integers determine the structure of monogenic semigroups. For every pair (m, r) of positive integers, there exists a monogenic semigroup having index m and period r. The monogenic semigroup having index m and period r is denoted by M(m, r). The monogenic semigroup M(1, r) is the cyclic group of order r.
The results in this section actually hold for any element a of an arbitrary semigroup and the monogenic subsemigroup it generates.
A related notion is that of periodic semigroup (also called torsion semigroup), in which every element has finite order (or, equivalently, in which every mongenic subsemigroup is finite).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup.
We consider a very simple Mealy machine ( two nontrivial states over a two-symbol alphabet), and derive some properties of the semigroup it generates. It is an infinite, finitely generated semigroup, and we show that the growth function of its balls behave ...
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...