In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup.
The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively.
In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigroups and occasionally on the cardinality and similar properties of subsets of the underlying set. The underlying sets are not assumed to carry any other mathematical structures like order or topology.
As in any algebraic theory, one of the main problems of the theory of semigroups is the classification of all semigroups and a complete description of their structure. In the case of semigroups, since the binary operation is required to satisfy only the associativity property the problem of classification is considered extremely difficult. Descriptions of structures have been obtained for certain special classes of semigroups. For example, the structure of the sets of idempotents of regular semigroups is completely known. Structure descriptions are presented in terms of better known types of semigroups. The best known type of semigroup is the group.
A (necessarily incomplete) list of various special classes of semigroups is presented below. To the extent possible the defining properties are formulated in terms of the binary operations in the semigroups.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Stochastic PDEs are used to model systems that are spatially extended and include a random component. This course gives an introduction to this topic, including some Gaussian measure theory and some a
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
En mathématiques, et en informatique théorique, le demi-groupe bicyclique est un demi-groupe particulier. Cet objet est important dans la théorie structurelle des demi-groupes et un important exemple de monoïde syntaxique. Même s'il est appelé demi-groupe bicyclique, c'est en fait un monoïde. La première description dans la littérature en a été donnée par Evgenii Sergeevich Lyapin en 1953. Alfred H. Clifford et Gordon Preston, dans leur livre, disent que l'un d'entre eux avait découvert ce monoïde avant 1943, en collaboration avec David Rees, mais n'avait pas publié le résultat.
En mathématiques, et notamment en algèbre, un demi-groupe inversif est un demi-groupe où tout élément a un inverse unique au sens des demi-groupes : pour tout élément de , il existe un élément unique de tel que et . Les demi-groupes inversifs apparaissent dans un certain nombre de contextes. L'exemple le plus courant est le demi-groupe des bijections partielles d'une ensemble dans lui-même appelé le demi-groupe inversif symétrique ou monoïde inversif symétrique sur cet ensemble.
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups. The monogenic semigroup generated by the singleton set {a} is denoted by . The set of elements of is {a, a2, a3, ...}. There are two possibilities for the monogenic semigroup : am = an ⇒ m = n. There exist m ≠ n such that am = an. In the former case is isomorphic to the semigroup ({1, 2, ...}, +) of natural numbers under addition.
Explore les ensembles denses, les séquences de Cauchy, les solutions périodiques et les solutions uniques dans les équations différentielles.
Couvre les concepts d'algèbre abstraite en utilisant des classes de type dans Scala, y compris la définition des monoïdes, la généralisation des fonctions de réduction et les lois de classe de type.
Explore des demi-groupes de contractions, discutant des théorèmes d'unicité, des principes maximums et du générateur infinitésimal.
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...
Let X be a finite set and let k be a commutative ring. We consider the k-algebra of the monoid of all relations on X, modulo the ideal generated by the relations factorizing through a set of cardinality strictly smaller than Card(X), called inessential rel ...
Walter de Gruyter2016
,
We give a direct construction of a specific central idempotent in the endomorphism algebra of a finite lattice T. This idempotent is associated with all possible sublattices of T which are totally ordered. A generalization is considered in a conjectural fa ...