Concept

Monogenic semigroup

Résumé
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups. The monogenic semigroup generated by the singleton set {a} is denoted by . The set of elements of is {a, a2, a3, ...}. There are two possibilities for the monogenic semigroup : am = an ⇒ m = n. There exist m ≠ n such that am = an. In the former case is isomorphic to the semigroup ({1, 2, ...}, +) of natural numbers under addition. In such a case, is an infinite monogenic semigroup and the element a is said to have infinite order. It is sometimes called the free monogenic semigroup because it is also a free semigroup with one generator. In the latter case let m be the smallest positive integer such that am = ax for some positive integer x ≠ m, and let r be smallest positive integer such that am = am+r. The positive integer m is referred to as the index and the positive integer r as the period of the monogenic semigroup . The order of a is defined as m+r−1. The period and the index satisfy the following properties: am = am+r am+x = am+y if and only if m + x ≡ m + y (mod r) = {a, a2, ... , am+r−1} Ka = {am, am+1, ... , am+r−1} is a cyclic subgroup and also an ideal of . It is called the kernel of a and it is the minimal ideal of the monogenic semigroup . The pair (m, r) of positive integers determine the structure of monogenic semigroups. For every pair (m, r) of positive integers, there exists a monogenic semigroup having index m and period r. The monogenic semigroup having index m and period r is denoted by M(m, r). The monogenic semigroup M(1, r) is the cyclic group of order r. The results in this section actually hold for any element a of an arbitrary semigroup and the monogenic subsemigroup it generates. A related notion is that of periodic semigroup (also called torsion semigroup), in which every element has finite order (or, equivalently, in which every mongenic subsemigroup is finite).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.