In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.
The study of crossing numbers originated in Turán's brick factory problem, in which Pál Turán asked for a factory plan that minimized the number of crossings between tracks connecting brick kilns to storage sites. Mathematically, this problem can be formalized as asking for the crossing number of a complete bipartite graph. The same problem arose independently in sociology at approximately the same time, in connection with the construction of sociograms. Turán's conjectured formula for the crossing numbers of complete bipartite graphs remains unproven, as does an analogous formula for the complete graphs.
The crossing number inequality states that, for graphs where the number e of edges is sufficiently larger than the number n of vertices, the crossing number is at least proportional to e^3/n^2. It has applications in VLSI design and incidence geometry.
Without further qualification, the crossing number allows drawings in which the edges may be represented by arbitrary curves. A variation of this concept, the rectilinear crossing number, requires all edges to be straight line segments, and may differ from the crossing number. In particular, the rectilinear crossing number of a complete graph is essentially the same as the minimum number of convex quadrilaterals determined by a set of n points in general position. The problem of determining this number is closely related to the happy ending problem.
For the purposes of defining the crossing number, a drawing of an undirected graph is a mapping from the vertices of the graph to disjoint points in the plane, and from the edges of the graph to curves connecting their two endpoints.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán, who formulated it while being forced to work in a brick factory during World War II. A drawing method found by Kazimierz Zarankiewicz has been conjectured to give the correct answer for every complete bipartite graph, and the statement that this is true has come to be known as the Zarankiewicz crossing number conjecture.
In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru. It has chromatic number 2, chromatic index 3, diameter 4, radius 4 and girth 6. It is also a 3-vertex-connected and 3-edge-connected graph. It has book thickness 3 and queue number 2. The Nauru graph requires at least eight crossings in any drawing of it in the plane.
Pál Turán (ˈpaːl ˈturaːn; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics. In 1940, because of his Jewish origins, he was arrested by the Nazis and sent to a labour camp in Transylvania, later being transferred several times to other camps. While imprisoned, Turán came up with some of his best theories, which he was able to publish after the war. Turán had a long collaboration with fellow Hungarian mathematician Paul Erdős, lasting 46 years and resulting in 28 joint papers.
A straight-line drawing of a graph G is a mapping which assigns to each vertex a point in the plane and to each edge a straight-line segment connecting the corresponding two points. The rectilinear crossing number of a graph G, (cr) over bar (G), is the mi ...
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi and Leighton, the nu ...
We show that any set of n points in general position in the plane determines n(1-o(1)) pairwise crossing segments. The best previously known lower bound, Omega(root n), was proved more than 25 years ago by Aronov, Erdos, Goddard, Kreitman, Krugerman, Pach, ...