In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. The Fourier transform of a function at a representation of is For each representation of , is a matrix, where is the degree of . The inverse Fourier transform at an element of is given by The convolution of two functions is defined as The Fourier transform of a convolution at any representation of is given by For functions , the Plancherel formula states where are the irreducible representations of . If the group G is a finite abelian group, the situation simplifies considerably: all irreducible representations are of degree 1 and hence equal to the irreducible characters of the group. Thus the matrix-valued Fourier transform becomes scalar-valued in this case. The set of irreducible G-representations has a natural group structure in its own right, which can be identified with the group of group homomorphisms from G to . This group is known as the Pontryagin dual of G. The Fourier transform of a function is the function given by The inverse Fourier transform is then given by For , a choice of a primitive n-th root of unity yields an isomorphism given by . In the literature, the common choice is , which explains the formula given in the article about the discrete Fourier transform. However, such an isomorphism is not canonical, similarly to the situation that a finite-dimensional vector space is isomorphic to its dual, but giving an isomorphism requires choosing a basis. A property that is often useful in probability is that the Fourier transform of the uniform distribution is simply , where 0 is the group identity and is the Kronecker delta. Fourier Transform can also be done on cosets of a group. There is a direct relationship between the Fourier transform on finite groups and the representation theory of finite groups. The set of complex-valued functions on a finite group, , together with the operations of pointwise addition and convolution, form a ring that is naturally identified with the group ring of over the complex numbers, .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.