Summary
In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold of dimension , a volume form is an -form. It is an element of the space of sections of the line bundle , denoted as . A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a nowhere-vanishing real valued function yields another volume form. On non-orientable manifolds, one may instead define the weaker notion of a density. A volume form provides a means to define the integral of a function on a differentiable manifold. In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold, orientable or not. Kähler manifolds, being complex manifolds, are naturally oriented, and so possess a volume form. More generally, the th exterior power of the symplectic form on a symplectic manifold is a volume form. Many classes of manifolds have canonical volume forms: they have extra structure which allows the choice of a preferred volume form. Oriented pseudo-Riemannian manifolds have an associated canonical volume form. The following will only be about orientability of differentiable manifolds (it's a more general notion defined on any topological manifold). A manifold is orientable if it has a coordinate atlas all of whose transition functions have positive Jacobian determinants. A selection of a maximal such atlas is an orientation on A volume form on gives rise to an orientation in a natural way as the atlas of coordinate charts on that send to a positive multiple of the Euclidean volume form A volume form also allows for the specification of a preferred class of frames on Call a basis of tangent vectors right-handed if The collection of all right-handed frames is acted upon by the group of general linear mappings in dimensions with positive determinant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (19)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Show more
Related lectures (41)
Meromorphic Functions & Differentials
Explores meromorphic functions, poles, residues, orders, divisors, and the Riemann-Roch theorem.
Harmonic Forms: Main Theorem
Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.
Deformable Bodies: Stress Tensors and Divergence Theorem
Explores stress tensors and the divergence theorem in deformable bodies through examples and demonstrations.
Show more
Related publications (33)
Related concepts (24)
Volume element
In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form where the are the coordinates, so that the volume of any set can be computed by For example, in spherical coordinates , and so . The notion of a volume element is not limited to three dimensions: in two dimensions it is often known as the area element, and in this setting it is useful for doing surface integrals.
Antisymmetric tensor
In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant. For example, holds when the tensor is antisymmetric with respect to its first three indices. If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric.
Exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors.
Show more