In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. The index subset must generally either be all covariant or all contravariant.
For example,
holds when the tensor is antisymmetric with respect to its first three indices.
If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order may be referred to as a differential -form, and a completely antisymmetric contravariant tensor field may be referred to as a -vector field.
A tensor A that is antisymmetric on indices and has the property that the contraction with a tensor B that is symmetric on indices and is identically 0.
For a general tensor U with components and a pair of indices and U has symmetric and antisymmetric parts defined as:
{|
|-
| || || (symmetric part)
|-
| || ||(antisymmetric part).
|}
Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in
A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M,
and for an order 3 covariant tensor T,
In any 2 and 3 dimensions, these can be written as
where is the generalized Kronecker delta, and we use the Einstein notation to summation over like indices.
More generally, irrespective of the number of dimensions, antisymmetrization over indices may be expressed as
In general, every tensor of rank 2 can be decomposed into a symmetric and anti-symmetric pair as:
This decomposition is not in general true for tensors of rank 3 or more, which have more complex symmetries.
Totally antisymmetric tensors include:
Trivially, all scalars and vectors (tensors of order 0 and 1) are totally antisymmetric (as well as being totally symmetric).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
En géométrie différentielle, une forme volume généralise la notion de déterminant aux variétés différentielles. Elle définit une mesure sur la variété, permet le calcul des volumes généralisés, et la définition générale des orientations. Une forme volume se définit comme une forme différentielle de degré maximal, nulle en aucun point. Pour qu'une variété admette une forme volume, il faut et il suffit qu'elle soit orientable. Dans ce cas, il en existe une infinité.
Le tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Introduit le concept de formes différentielles et leurs applications dans les collecteurs n-dimensionnels, y compris le tenseur Levi-Civita et la forme de volume.
In this thesis, we propose and analyze novel numerical algorithms for solving three different high-dimensional problems involving tensors. The commonality of these problems is that the tensors can potentially be well approximated in low-rank formats. Ident ...
A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
SIAM PUBLICATIONS2023
Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...