Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat (tallow), soybean oil, or some other vegetable oil with an alcohol, producing a methyl, ethyl or propyl ester by the process of transesterification.
Unlike the vegetable and waste oils used to fuel converted diesel engines, biodiesel is a drop-in biofuel, meaning it is compatible with existing diesel engines and distribution infrastructure. However, it is usually blended with petrodiesel (typically to less than 10%) since most engines cannot run on pure biodiesel without modification. Biodiesel blends can also be used as heating oil.
The US National Biodiesel Board defines "biodiesel" as a mono-alkyl ester.
Blends of biodiesel and conventional hydrocarbon-based diesel are most commonly distributed for use in the retail diesel fuel marketplace. Much of the world uses a system known as the "B" factor to state the amount of biodiesel in any fuel mix:
100% biodiesel is referred to as B100
20% biodiesel, 80% petrodiesel is labeled B20
10% biodiesel, 90% petrodiesel is labeled B10
7% biodiesel, 93% petrodiesel is labeled B7
5% biodiesel, 95% petrodiesel is labeled B5
2% biodiesel, 98% petrodiesel is labeled B2
Blends of 20% biodiesel and lower can be used in diesel equipment with no, or only minor modifications, although certain manufacturers do not extend warranty coverage if equipment is damaged by these blends. The B6 to B20 blends are covered by the ASTM D7467 specification. Biodiesel can also be used in its pure form (B100), but may require certain engine modifications to avoid maintenance and performance problems. Blending B100 with petroleum diesel may be accomplished by:
Mixing in tanks at manufacturing point prior to delivery to tanker truck
Splash mixing in the tanker truck (adding specific percentages of biodiesel and petroleum diesel)
In-line mixing, two components arrive at tanker truck simultaneously.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. The climate change mitigation potential of biofuel varies considerably, from emission levels comparable to fossil fuels in some scenarios to negative emissions in others. Biofuels are mostly used for transportation, but can also be used for heating and electricity.
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
Vegetable oils, or vegetable fats, are oils extracted from seeds or from other parts of fruits. Like animal fats, vegetable fats are mixtures of triglycerides. Soybean oil, grape seed oil, and cocoa butter are examples of seed oils, or fats from seeds. Olive oil, palm oil, and rice bran oil are examples of fats from other parts of fruits. In common usage, vegetable oil may refer exclusively to vegetable fats which are liquid at room temperature. Vegetable oils are usually edible. Such oils have been part of human culture for millennia.
Explores challenges and successes in green mobility, road transport impact on CO2 emissions, sector distribution of emissions, and strategies for emission reduction.
Edible electronics leverages the electronic properties of food-derived materials to deliver safer technologies that can be degraded (or digested) in the environment (or body) at the end-of-life. Sensors will be central to future smart edible robots, and ed ...
Developing sustainable, recyclable, and biodegradable elastomers with the mechanical properties comparable to commercial polymers presents a formidable challenge. To this end, we synthesize a kind of mechanically robust elastomers cross -linked by acetoace ...
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer-Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for tran ...