An ion (ˈaɪ.ɒn,_-ən) is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons.
A cation is a positively charged ion with fewer electrons than protons while an anion is a negatively charged ion with more electrons than protons. Opposite electric charges are pulled towards one another by electrostatic force, so cations and anions attract each other and readily form ionic compounds.
Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions. In the case of physical ionization in a fluid (gas or liquid), "ion pairs" are created by spontaneous molecule collisions, where each generated pair consists of a free electron and a positive ion. Ions are also created by chemical interactions, such as the dissolution of a salt in liquids, or by other means, such as passing a direct current through a conducting solution, dissolving an anode via ionization.
The word ion was coined from Greek neuter present participle of ienai (ἰέναι), meaning "to go". A cation is something that moves down (κάτω pronounced kato, meaning "down") and an anion is something that moves up (ano ἄνω, meaning "up"). They are so called because ions move toward the electrode of opposite charge. This term was introduced (after a suggestion by the English polymath William Whewell) by English physicist and chemist Michael Faraday in 1834 for the then-unknown species that goes from one electrode to the other through an aqueous medium. Faraday did not know the nature of these species, but he knew that since metals dissolved into and entered a solution at one electrode and new metal came forth from a solution at the other electrode; that some kind of substance has moved through the solution in a current.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
This multidisciplinary course presents, from both engineering and medical perspectives, the state-of-the-art, applications and impact of wearable and implantable technologies, with focus on cardiovasc
The purpose of this course is to provide the necessary background to understand the effects of irradiation on pure metals and on alloys used in the nuclear industry. The relation between the radiation
The fluoronium ion is an inorganic cation with the chemical formula H2F+. It is one of the cations found in fluoroantimonic acid. The structure of the salt with the Sb2F11- anion, has been determined. The fluoronium ion is isoelectronic with the water molecule and the azanide ion. The term can also refer to organyl substituted species of type H––R, R––R, or R2C=F+.
Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula Sn2−. These anions are the conjugate bases of polysulfanes . Organic polysulfides generally have the formulae , where R = alkyl or aryl. The alkali metal polysulfides arise by treatment of a solution of sulfide, e.g. sodium sulfide, with elemental sulfur: S2- + n S → Sn+12− In some cases, these anions have been obtained as organic salts, which are soluble in organic solvents.
Fluoride (ˈflʊəraɪd,_ˈflɔr-) is an inorganic, monatomic anion of fluorine, with the chemical formula F− (also written [F]−), whose salts are typically white or colorless. Fluoride salts typically have distinctive bitter tastes, and are odorless. Its salts and minerals are important chemical reagents and industrial chemicals, mainly used in the production of hydrogen fluoride for fluorocarbons. Fluoride is classified as a weak base since it only partially associates in solution, but concentrated fluoride is corrosive and can attack the skin.
Silicon heterojunction (SHJ)-solar modules-when encapsulated with ethylene vinyl acetate (EVA)-are known to be extremely sensitive to water ingress. The reason for this is, however, not clear. Here, we explain the root causes of this degradation mechanism ...
MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfv & eacute;nic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in ...
Iop Publishing Ltd2024
Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...