In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: or depending on the context. If the group operation is denoted then it is defined by
The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group.
The trivial group is distinct from the empty set, which has no elements, hence lacks an identity element, and so cannot be a group.
Given any group the group consisting of only the identity element is a subgroup of and, being the trivial group, is called the of
The term, when referred to " has no nontrivial proper subgroups" refers to the only subgroups of being the trivial group and the group itself.
The trivial group is cyclic of order ; as such it may be denoted or If the group operation is called addition, the trivial group is usually denoted by If the group operation is called multiplication then 1 can be a notation for the trivial group. Combining these leads to the trivial ring in which the addition and multiplication operations are identical and
The trivial group serves as the zero object in the , meaning it is both an initial object and a terminal object.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a . The study of this category is known as group theory. There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to . M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid.
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a.
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.
The present invention relates to a compound of the general formula (I), and (II)wherein one of R11 and R12 is hydrogen and the other is -CH2-R70, and one of R13 and R14 is hydrogen and the other is -CH2-R71, or wherein one of R11 and R12 is hydrogen and th ...
2024
, , ,
The present invention relates to a compound of the general formula (I), (II) and (III), more specifically of formula (Ia), (Ib), (Ic)wherein R11 and R12 or R21 and R22 or R31 and R32 are both hydrogen or form together with CHR50 a cyclic moiety or one of R ...
2024
, , ,
The present invention relates to a method for preparing an at least partially acetal-protected sugar involving the step of reacting a sugar or a sugar derivative selected from the group consisting of an aldopentose, an aldohexose, an aldopentoside and an a ...