En mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ». (La numérotation est inverse dans certains ouvrages.) Une conséquence importante du second théorème est de permettre de calculer une intégrale en utilisant une primitive de la fonction à intégrer. Avant la découverte du théorème fondamental de l'analyse, la relation entre intégration et dérivation n'était pas soupçonnée. Les mathématiciens grecs savaient déjà calculer des aires et des volumes à l'aide d'infinitésimaux, une opération qui serait actuellement appelée une intégration. La notion de différentiation fut introduite elle aussi dès le Moyen Âge ; ainsi, les notions de continuité de fonctions et de vitesse de déplacement furent étudiées par les Calculateurs d'Oxford au . L'importance historique du théorème ne fut pas tant de faciliter le calcul des intégrales que de faire prendre conscience que ces deux opérations apparemment sans rapport (le calcul d'aires, et le calcul de vitesses) sont en fait étroitement reliées. Le premier énoncé (et sa démonstration) d'une forme partielle du théorème fut publié par James Gregory en 1668. Isaac Barrow en démontra une forme plus générale, mais c'est Isaac Newton (élève de Barrow) qui acheva de développer la théorie mathématique englobant le théorème. Gottfried Wilhelm Leibniz systématisa ces résultats sous forme d'un calcul des infinitésimaux, et introduisit les notations toujours actuellement utilisées. vignette|droite|300px|Illustration animée de l'intégration selon Riemann.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
Afficher plus
Personnes associées (3)
Concepts associés (22)
Intégrale non élémentaire
En mathématiques, une intégrale non élémentaire est une intégrale qui n'a aucune formule en termes de fonctions élémentaires. L'existence de telles fonctions a été démontrée par Joseph Liouville en 1835. Parmi les intégrales non élémentaires, on peut citer où R est une fonction rationnelle à deux variables, P est une fonction polynomiale de degré 3 ou 4 avec des racines simples, qui donnent les intégrales elliptiques ; qui donne le logarithme intégral ; à l'origine de la loi normale. Théorème de Liouvill
Somme de Riemann
En mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Fonction numérique
vignette|Trois fonctions numériques représentant les précipitations, la température minimale et la température maximale au long de l'année à Brest En mathématiques, une fonction numérique est une fonction à valeurs réelles, c'est-à-dire qu'elle associe à toute valeur possible de ses variables un résultat numérique. Le terme est souvent employé pour désigner une fonction réelle d'une variable réelle, notamment dans l'enseignement secondaire, mais il recouvre aussi les notions de fonction de plusieurs variables ou de fonctions définies sur d’autres espaces topologiques comme les variétés différentiables, ou sur des structures discrètes comme les graphes.
Afficher plus
MOOCs associés (10)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.