Résumé
En mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ». (La numérotation est inverse dans certains ouvrages.) Une conséquence importante du second théorème est de permettre de calculer une intégrale en utilisant une primitive de la fonction à intégrer. Avant la découverte du théorème fondamental de l'analyse, la relation entre intégration et dérivation n'était pas soupçonnée. Les mathématiciens grecs savaient déjà calculer des aires et des volumes à l'aide d'infinitésimaux, une opération qui serait actuellement appelée une intégration. La notion de différentiation fut introduite elle aussi dès le Moyen Âge ; ainsi, les notions de continuité de fonctions et de vitesse de déplacement furent étudiées par les Calculateurs d'Oxford au . L'importance historique du théorème ne fut pas tant de faciliter le calcul des intégrales que de faire prendre conscience que ces deux opérations apparemment sans rapport (le calcul d'aires, et le calcul de vitesses) sont en fait étroitement reliées. Le premier énoncé (et sa démonstration) d'une forme partielle du théorème fut publié par James Gregory en 1668. Isaac Barrow en démontra une forme plus générale, mais c'est Isaac Newton (élève de Barrow) qui acheva de développer la théorie mathématique englobant le théorème. Gottfried Wilhelm Leibniz systématisa ces résultats sous forme d'un calcul des infinitésimaux, et introduisit les notations toujours actuellement utilisées. vignette|droite|300px|Illustration animée de l'intégration selon Riemann.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.