Summary
In probability theory, the complement of any event A is the event [not A], i.e. the event that A does not occur. The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A. The complement of an event A is usually denoted as A′, Ac, A or . Given an event, the event and its complementary event define a Bernoulli trial: did the event occur or not? For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails." Because these two outcomes are mutually exclusive (i.e. the coin cannot simultaneously show both heads and tails) and collectively exhaustive (i.e. there are no other possible outcomes not represented between these two), they are therefore each other's complements. This means that [heads] is logically equivalent to [not tails], and [tails] is equivalent to [not heads]. In a random experiment, the probabilities of all possible events (the sample space) must total to 1— that is, some outcome must occur on every trial. For two events to be complements, they must be collectively exhaustive, together filling the entire sample space. Therefore, the probability of an event's complement must be unity minus the probability of the event. That is, for an event A, Equivalently, the probabilities of an event and its complement must always total to 1. This does not, however, mean that any two events whose probabilities total to 1 are each other's complements; complementary events must also fulfill the condition of mutual exclusivity. Suppose one throws an ordinary six-sided die eight times. What is the probability that one sees a "1" at least once? It may be tempting to say that Pr(["1" on 1st trial] or ["1" on second trial] or ... or ["1" on 8th trial]) = Pr("1" on 1st trial) + Pr("1" on second trial) + ... + P("1" on 8th trial) = 1/6 + 1/6 + ... + 1/6 = 8/6 = 1.3333...
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (7)
Advanced Probability: Bayes' Theorem and Random Variables
Covers advanced probability concepts, including Bayes' Theorem and Random Variables.
Probability Theory: Properties and Combinatorial Principles
Explores probability properties, inclusion-exclusion principle, combinatorial rules, and birthday coincidence probability calculation.
Probability and Statistics
Introduces key concepts in probability and statistics, such as events, Venn diagrams, and conditional probability.
Show more