In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713).
The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process. This article offers an elementary introduction to the concept, whereas the article on the Bernoulli process offers a more advanced treatment.
Since a Bernoulli trial has only two possible outcomes, it can be framed as some "yes or no" question. For example:
Is the top card of a shuffled deck an ace?
Was the newborn child a girl? (See human sex ratio.)
Therefore, success and failure are merely labels for the two outcomes, and should not be construed literally. The term "success" in this sense consists in the result meeting specified conditions; it is not a value judgement. More generally, given any probability space, for any event (set of outcomes), one can define a Bernoulli trial, corresponding to whether the event occurred or not (event or complementary event). Examples of Bernoulli trials include:
Flipping a coin. In this context, obverse ("heads") conventionally denotes success and reverse ("tails") denotes failure. A fair coin has the probability of success 0.5 by definition. In this case, there are exactly two possible outcomes.
Rolling a , where a six is "success" and everything else a "failure". In this case, there are six possible outcomes, and the event is a six; the complementary event "not a six" corresponds to the other five possible outcomes.
In conducting a political opinion poll, choosing a voter at random to ascertain whether that voter will vote "yes" in an upcoming referendum.
Independent repeated trials of an experiment with exactly two possible outcomes are called Bernoulli trials. Call one of the outcomes "success" and the other outcome "failure".
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
En mathématiques et plus précisément en théorie des probabilités, la loi de Bernoulli, du nom du mathématicien suisse Jacques Bernoulli, désigne la loi de probabilité d'une variable aléatoire discrète qui prend la valeur 1 avec la probabilité p et 0 avec la probabilité q = 1 – p. gauche|vignette Par exemple, dans pile ou face, le lancer d'une pièce de monnaie bien équilibrée tombe sur pile avec une probabilité 1/2 et sur face avec une probabilité 1/2.
En statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent
In this thesis, timing is everything. In the first part, we mean this literally, as we tackle systems that encode information using timing alone. In the second part, we adopt the standard, metaphoric interpretation of this saying and show the importance of ...
In this article, we prove that double quasi-Poisson algebras, which are noncommutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in [11], where a correspondence between certai ...
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...