Summary
Two-hybrid screening (originally known as yeast two-hybrid system or Y2H) is a molecular biology technique used to discover protein–protein interactions (PPIs) and protein–DNA interactions by testing for physical interactions (such as binding) between two proteins or a single protein and a DNA molecule, respectively. The premise behind the test is the activation of downstream reporter gene(s) by the binding of a transcription factor onto an upstream activating sequence (UAS). For two-hybrid screening, the transcription factor is split into two separate fragments, called the DNA-binding domain (DBD or often also abbreviated as BD) and activating domain (AD). The BD is the domain responsible for binding to the UAS and the AD is the domain responsible for the activation of transcription. The Y2H is thus a protein-fragment complementation assay. Pioneered by Stanley Fields and Ok-Kyu Song in 1989, the technique was originally designed to detect protein–protein interactions using the Gal4 transcriptional activator of the yeast Saccharomyces cerevisiae. The Gal4 protein activated transcription of a gene involved in galactose utilization, which formed the basis of selection. Since then, the same principle has been adapted to describe many alternative methods, including some that detect protein–DNA interactions or DNA-DNA interactions, as well as methods that use different host organisms such as Escherichia coli or mammalian cells instead of yeast. The key to the two-hybrid screen is that in most eukaryotic transcription factors, the activating and binding domains are modular and can function in proximity to each other without direct binding. This means that even though the transcription factor is split into two fragments, it can still activate transcription when the two fragments are indirectly connected. The most common screening approach is the yeast two-hybrid assay. In this approach the researcher knows where each prey is located on the used medium (agar plates).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
CH-412: Frontiers in chemical biology
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
CH-319: Experimental biochemistry and biophysics
A 7-week long (4+8 h) experiment where you plan and construct a fluorescent sensor protein starting from DNA bricks. The protein will be expressed in and purified from E.coli, characterized by bioche
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Show more
Related lectures (12)
Protein Engineering & In vitro Evolution
Explores protein engineering, screening methods, scaffold properties, computational design, and continuous evolution of biomolecules.
COVID-19 Diagnostic Tools
Explores COVID-19 diagnostic tools, SARS-CoV2 biology, and detection strategies for early and accurate diagnosis.
Protein Engineering & In Vitro Evolution
Explores protein engineering, computational design, and screening protein libraries to generate novel proteins with desired functions.
Show more
Related publications (96)