In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation.
There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as CZF and the study of topos theory.
Constructivism is often identified with intuitionism, although intuitionism is only one constructivist program. Intuitionism maintains that the foundations of mathematics lie in the individual mathematician's intuition, thereby making mathematics into an intrinsically subjective activity. Other forms of constructivism are not based on this viewpoint of intuition, and are compatible with an objective viewpoint on mathematics.
Much constructive mathematics uses intuitionistic logic, which is essentially classical logic without the law of the excluded middle. This law states that, for any proposition, either that proposition is true or its negation is. This is not to say that the law of the excluded middle is denied entirely; special cases of the law will be provable. It is just that the general law is not assumed as an axiom. The law of non-contradiction (which states that contradictory statements cannot both at the same time be true) is still valid.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Construire dans le construit n'est pas une pratique nouvelle. Ce qui en fait une attitude contemporaine est le type de questionnements théoriques et pratiques sur l'objet architectural ainsi que le re
Ce cours s'articule autour de la conception en équipe d'un théâtre temporaire, mobile et durable. La démarche pédagogique s'appuiera sur une approche de design intégré, appliquée à la conception et l'
The course traces the recurring reemergence of a rational approach in design and building form throughout the history of Western architecture, from the Middle Ages to the late 20th century.
This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
New York2023
, , , , ,
The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data prin ...
Berlin2023
The second Ibois Notebook focuses its reflections on the Grand-Chalet station project in Rossinière. Christophe Catsaros and Tadashi Ono carry out a landscape analysis in text and image around the idea of a revival of the alpine vernacular. Isabel Concheir ...