Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J: Momentum is a vector quantity, so impulse is also a vector quantity. Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: so the impulse J delivered by a steady force F acting for time Δt is: The impulse delivered by a varying force is the integral of the force F with respect to time: The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s). Impulse J produced from time t1 to t2 is defined to be where F is the resultant force applied from t1 to t2. From Newton's second law, force is related to momentum p by Therefore, where Δp is the change in linear momentum from time t1 to t2. This is often called the impulse-momentum theorem (analogous to the work-energy theorem). As a result, an impulse may also be regarded as the change in momentum of an object to which a resultant force is applied. The impulse may be expressed in a simpler form when the mass is constant: where F is the resultant force applied, t1 and t2 are times when the impulse begins and ends, respectively, m is the mass of the object, v2 is the final velocity of the object at the end of the time interval, and v1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT−1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s. The term "impulse" is also used to refer to a fast-acting force or impact. This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time.
Anton Schleiss, Michael Pfister, Davide Wüthrich
Herbert Shea, Simon Dandavino, Daniel George Courtney
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Roberto Castello, Alessandro Degano, Xin Chen, Davide Di Croce, Mingkui Wang, Zhirui Xu, Chao Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Yanlin Liu, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Kai Yi, Bibhuprasad Mahakud, Zhen Liu, Lei Feng, Muhammad Waqas, Shuai Liu, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Aram Avetisyan, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu