In mathematical logic, a sentence (or closed formula) of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic formulas by applying connectives and quantifiers.
A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory. For first-order theories, interpretations are commonly called structures. Given a structure or interpretation, a sentence will have a fixed truth value. A theory is satisfiable when it is possible to present an interpretation in which all of its sentences are true. The study of algorithms to automatically discover interpretations of theories that render all sentences as being true is known as the satisfiability modulo theories problem.
For the interpretation of formulas, consider these structures: the positive real numbers, the real numbers, and complex numbers. The following example in first-order logic
a sentence. This sentence means that for every y, there is an x such that This sentence is true for positive real numbers, false for real numbers, and true for complex numbers.
However, the formula
is a sentence because of the presence of the free variable y. For real numbers, this formula is true if we substitute (arbitrarily) but is false if
It is the presence of a free variable, rather than the inconstant truth value, that is important; for example, even for complex numbers, where the formula is always true, it is still not considered a sentence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation.
In logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false (may also be referred to as a proposition, statement or truthbearer) and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid" is a molecular sentence in natural language. From a logical analysis point of view, the truth or falsity of sentences in general is determined by only two things: the logical form of the sentence and the truth or falsity of its simple sentences.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Writing correct software is hard, yet in systems that have a high failure cost or are not easily upgraded like blockchains, bugs and security problems cannot be tolerated. Therefore, these systems are perfect use cases for formal verification, the task of ...
Independent modeling of various modules of an information system (IS), and consequently database subschemas, may result in formal or semantic conflicts between the modules being modeled. Such conflicts may cause collisions between the integrated database s ...
Medical cyber-physical systems are a new trend of software controlled physical systems that are increasingly common in medical domains. With rapid developments in medical science and computer technology, safety verification and simulation becomes more chal ...