Interprétation (logique)En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
Atomic sentenceIn logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false (may also be referred to as a proposition, statement or truthbearer) and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid" is a molecular sentence in natural language. From a logical analysis point of view, the truth or falsity of sentences in general is determined by only two things: the logical form of the sentence and the truth or falsity of its simple sentences.
Théorie axiomatiqueQuand on parle de théorie mathématique, on fait référence à une somme d'énoncés, de définitions, de méthodes de preuve, etc. La théorie de la calculabilité en est un exemple. Par théorie axiomatique, on fait référence à quelque chose de plus précis, des axiomes et leurs conséquences, les théorèmes, énoncés dans un langage précis. Dans la suite on dira le plus souvent théorie pour théorie axiomatique, ce qui est d'usage courant en logique mathématique.
Structure (logique mathématique)En logique mathématique, plus précisément en théorie des modèles, une structure est un ensemble muni de fonctions et de relations définies sur cet ensemble. Les structures usuelles de l'algèbre sont des structures en ce sens. On utilise également le mot modèle comme synonyme de structure (voir Note sur l'utilisation du mot modèle). La sémantique de la logique du premier ordre se définit dans une structure.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Elementary classIn model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. A class K of structures of a signature σ is called an elementary class if there is a first-order theory T of signature σ, such that K consists of all models of T, i.e., of all σ-structures that satisfy T. If T can be chosen as a theory consisting of a single first-order sentence, then K is called a basic elementary class.
Syntaxe (logique)alt=Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels. Les symboles et les chaînes de symboles peuvent être divisés en formules bien formées. Un langage formel peut être considéré comme identique à l'ensemble de ses formules bien formées. L'ensemble des formules bien formées peut être divisé en théorèmes et non-théorèmes.|vignette|Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels.
SatisfaisabilitéEn logique mathématique, la satisfaisabilité ou satisfiabilité et la validité sont des concepts élémentaires de sémantique. Une formule est satisfaisable s'il est possible de trouver une interprétation (modèle), une façon d'interpréter tous les éléments constitutifs de la formule, qui rend la formule vraie. Une formule est universellement valide, ou en raccourci valide si, pour toutes les interprétations, la formule est vraie.
Truth-bearerA truth-bearer is an entity that is said to be either true or false and nothing else. The thesis that some things are true while others are false has led to different theories about the nature of these entities. Since there is divergence of opinion on the matter, the term truth-bearer is used to be neutral among the various theories.
Théorème de compacitévignette|420x420px|Si toute partie finie d'une théorie est satisfaisable (schématisée à gauche), alors la théorie est satisfaisable (schématisée à droite). En logique mathématique, un théorème de compacité énonce que si toute partie finie d'une théorie est satisfaisable alors la théorie elle-même est satisfaisable. Il existe des logiques où il y a un théorème de compacité comme le calcul propositionnel ou la logique du premier ordre (on parle de logiques compactes). Il existe aussi des logiques sans théorème de compacité.