Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.
It is also the term of art used for the specialized knowledge used by navigators to perform navigation tasks. All navigational techniques involve locating the navigator's position compared to known locations or patterns.
Navigation, in a broader sense, can refer to any skill or study that involves the determination of position and direction. In this sense, navigation includes orienteering and pedestrian navigation.
History of geodesy
In the European medieval period, navigation was considered part of the set of seven mechanical arts, none of which were used for long voyages across open ocean. Polynesian navigation is probably the earliest form of open-ocean navigation; it was based on memory and observation recorded on scientific instruments like the Marshall Islands Stick Charts of Ocean Swells. Early Pacific Polynesians used the motion of stars, weather, the position of certain wildlife species, or the size of waves to find the path from one island to another.
Maritime navigation using scientific instruments such as the mariner's astrolabe first occurred in the Mediterranean during the Middle Ages. Although land astrolabes were invented in the Hellenistic period and existed in classical antiquity and the Islamic Golden Age, the oldest record of a sea astrolabe is that of Spanish astronomer Ramon Llull dating from 1295. The perfecting of this navigation instrument is attributed to Portuguese navigators during early Portuguese discoveries in the Age of Discovery. The earliest known description of how to make and use a sea astrolabe comes from Spanish cosmographer Martín Cortés de Albacar's Arte de Navegar (The Art of Navigation) published in 1551, based on the principle of the archipendulum used in constructing the Egyptian pyramids.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as "dead reckoning." Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.
Longitude (ˈlɒndʒᵻtjuːd, ˈlɒŋɡᵻ-) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain.
A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lenses and to serve as a beacon for navigational aid, for maritime pilots at sea or on inland waterways. Lighthouses mark dangerous coastlines, hazardous shoals, reefs, rocks, and safe entries to harbors; they also assist in aerial navigation. Once widely used, the number of operational lighthouses has declined due to the expense of maintenance and has become uneconomical since the advent of much cheaper, more sophisticated and effective electronic navigational systems.
The goal of this lab series is to practice the various theoretical frameworks acquired in the courses on a variety of robots, ranging from industrial robots to autonomous mobile robots, to robotic dev
The course teaches the basics of autonomous mobile robots. Both hardware (energy, locomotion, sensors) and software (signal processing, control, localization, trajectory planning, high-level control)
Determination of spatial orientation (i.e. position, velocity, attitude) via integration of inertial sensors with satellite positioning. Prerequisite for many applications related to remote sensing, e
Ce cours de base en géomatique présente les concepts et méthodes d’acquisition, de gestion et de représentation des géodonnées. Il inclut les bases de topométrie, géodésie et cartographie, avec un acc
Ce cours de base en géomatique présente les concepts et méthodes d’acquisition, de gestion et de représentation des géodonnées. Il inclut les bases de topométrie, géodésie et cartographie, avec un acc
Drones hold promise to assist in civilian tasks. To realize this application, future drones must operate within large cities, covering large distances while navigating within cluttered urban landscapes. The increased efficiency of winged drones over rotary ...
EPFL2024
,
Controlling complex tasks in robotic systems, such as circular motion for cleaning or following curvy lines, can be dealt with using nonlinear vector fields. This article introduces a novel approach called the rotational obstacle avoidance method (ROAM) fo ...
Autonomous navigation of small UAVs is typically based on the integration of inertial navigation systems (INS) together with global navigation satellite systems (GNSS). However, GNSS signals can face various forms of interference affecting their continuous ...