In computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place.
In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers. However, this form is very limited as simply having an index to a length n array requires O(log n) bits. More broadly, in-place means that the algorithm does not use extra space for manipulating the input but may require a small though nonconstant extra space for its operation. Usually, this space is O(log n), though sometimes anything in o(n) is allowed. Note that space complexity also has varied choices in whether or not to count the index lengths as part of the space used. Often, the space complexity is given in terms of the number of indices or pointers needed, ignoring their length. In this article, we refer to total space complexity (DSPACE), counting pointer lengths. Therefore, the space requirements here have an extra log n factor compared to an analysis that ignores the length of indices and pointers.
An algorithm may or may not count the output as part of its space usage. Since in-place algorithms usually overwrite their input with output, no additional space is needed. When writing the output to write-only memory or a stream, it may be more appropriate to only consider the working space of the algorithm. In theoretical applications such as log-space reductions, it is more typical to always ignore output space (in these cases it is more essential that the output is write-only).
Given an array of n items, suppose we want an array that holds the same elements in reversed order and to dispose of the original.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot.
A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. The binary heap was introduced by J. W. J. Williams in 1964, as a data structure for heapsort. A binary heap is defined as a binary tree with two additional constraints: Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.
Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing the current element with the one after it, swapping their values if needed. These passes through the list are repeated until no swaps had to be performed during a pass, meaning that the list has become fully sorted. The algorithm, which is a comparison sort, is named for the way the larger elements "bubble" up to the top of the list.
In this paper we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU), for convergence to \textit{Coarse Correlated Equilibria} (CCE) in general games. CMWU effectively corresponds to the standard MWU algorithm but where ...
Optimized Schwarz Methods (OSMs) are based on optimized transmission conditions along the interfaces between the subdomains. Optimized transmission conditions are derived at the theoretical level, using techniques developed in the last decades. The hypothe ...
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these ...