In cardiology, ventricular remodeling (or cardiac remodeling) refers to changes in the size, shape, structure, and function of the heart. This can happen as a result of exercise (physiological remodeling) or after injury to the heart muscle (pathological remodeling). The injury is typically due to acute myocardial infarction (usually transmural or ST segment elevation infarction), but may be from a number of causes that result in increased pressure or volume, causing pressure overload or volume overload (forms of strain) on the heart. Chronic hypertension, congenital heart disease with intracardiac shunting, and valvular heart disease may also lead to remodeling. After the insult occurs, a series of histopathological and structural changes occur in the left ventricular myocardium that lead to progressive decline in left ventricular performance. Ultimately, ventricular remodeling may result in diminished contractile (systolic) function and reduced stroke volume.
Physiological remodeling is reversible while pathological remodeling is mostly irreversible. Remodeling of the ventricles under left/right pressure demand make mismatches inevitable. Pathologic pressure mismatches between the pulmonary and systemic circulation guide compensatory remodeling of the left and right ventricles. The term "reverse remodeling" in cardiology implies an improvement in ventricular mechanics and function following a remote injury or pathological process.
Ventricular remodeling may include ventricular hypertrophy, ventricular dilation, cardiomegaly, and other changes. It is an aspect of cardiomyopathy, of which there are many types. Concentric hypertrophy is due to pressure overload, while eccentric hypertrophy is due to volume overload.
The cardiac myocyte is the major cell involved in remodeling. Fibroblasts, collagen, the interstitium, and the coronary vessels to a lesser extent, also play a role. A common scenario for remodeling is after myocardial infarction. There is myocardial necrosis (cell death) and disproportionate thinning of the heart.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ventricular hypertrophy (VH) is thickening of the walls of a ventricle (lower chamber) of the heart. Although left ventricular hypertrophy (LVH) is more common, right ventricular hypertrophy (RVH), as well as concurrent hypertrophy of both ventricles can also occur. Ventricular hypertrophy can result from a variety of conditions, both adaptive and maladaptive. For example, it occurs in what is regarded as a physiologic, adaptive process in pregnancy in response to increased blood volume; but can also occur as a consequence of ventricular remodeling following a heart attack.
Athletic heart syndrome (AHS) is a non-pathological condition commonly seen in sports medicine in which the human heart is enlarged, and the resting heart rate is lower than normal. The athlete's heart is associated with physiological cardiac remodeling as a consequence of repetitive cardiac loading. Athlete's heart is common in athletes who routinely exercise more than an hour a day, and occurs primarily in endurance athletes, though it can occasionally arise in heavy weight trainers.
This lecture will cover anatomy and physiology of the cardiovascular system, biophysics of the blood, cardiac mechanics, hemodynamics and biomechanics of the arterial system, microcirculation and biom
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
The transaortic valvular pressure gradient (TPG) plays a central role in decision-making for patients suffering from severe aortic stenosis. However, the flow-dependence nature of the TPG makes the diagnosis of aortic stenosis challenging since the markers ...
MDPI2023
, ,
Hypertension is the most common cause of left ventricular hypertrophy, contributing to heart failure progression. Candesartan (Cand) is an angiotensin receptor antagonist widely used for hypertension treatment. Structural modifications were previously perf ...
Introduction: Synthetic vascular grafts have been widely used in clinical practice for aortic replacement surgery. Despite their high rates of surgical success, they remain significantly less compliant than the native aorta, resulting in a phenomenon calle ...