The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.
In the history of thermodynamics, the initial explanations of heat were thoroughly confused with explanations of combustion. After J. J. Becher and Georg Ernst Stahl introduced the phlogiston theory of combustion in the 17th century, phlogiston was thought to be the substance of heat.
There is one version of the caloric theory that was introduced by Antoine Lavoisier. Prior to Lavoisier's caloric theory, published references concerning heat and its existence, outside of being an agent for chemical reactions, were sparse only having been offered by Joseph Black in Rozier's Journal (1772) citing the melting temperature of ice. In response to Black, Lavoisier's private manuscripts revealed that he had encountered the same phenomena of a fixed melting point for ice and mentioned that he had already formulated an explanation which he had not published as of yet. Lavoisier developed the explanation of combustion in terms of oxygen in the 1770s. In his paper "Réflexions sur le phlogistique" (1783), Lavoisier argued that phlogiston theory was inconsistent with his experimental results, and proposed a 'subtle fluid' called caloric as the substance of heat. According to this theory, the quantity of this substance is constant throughout the universe, and it flows from warmer to colder bodies. Indeed, Lavoisier was one of the first to use a calorimeter to measure the heat released during chemical reaction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat.
Antoine-Laurent de Lavoisier (UKlæˈvwʌzieɪ , USləˈvwɑːzieɪ ; ɑ̃twan lɔʁɑ̃ də lavwazje; 26 August 1743 8 May 1794), also Antoine Lavoisier after the French Revolution, was a French nobleman and chemist who was central to the 18th-century chemical revolution and who had a large influence on both the history of chemistry and the history of biology. It is generally accepted that Lavoisier's great accomplishments in chemistry stem largely from his changing the science from a qualitative to a quantitative one.
Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy. This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. The surroundings also can perform work on a thermodynamic system, which is measured by an opposite sign convention.
An important part of the electricity production relies on heat conversion. Indeed power plants burn fuels like natural gas, coal or use nuclear fission to produce heat that can be transformed into electricity through a thermodynamic cycle and the mechanica ...
The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed thr ...
Pergamon-Elsevier Science Ltd2014
,
Trapping phenomena involving nonlinear resonances have been considered in the past in the framework of adiabatic theory. Several results are known for continuous-time dynamical systems generated by Hamiltonian flows in which the combined effect of nonlinea ...