Concept

Null semigroup

In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously. According to Clifford and Preston, "In spite of their triviality, these semigroups arise naturally in a number of investigations." Let S be a semigroup with zero element 0. Then S is called a null semigroup if xy = 0 for all x and y in S. Let S = {0, a, b, c} be (the underlying set of) a null semigroup. Then the Cayley table for S is as given below: A semigroup in which every element is a left zero element is called a left zero semigroup. Thus a semigroup S is a left zero semigroup if xy = x for all x and y in S. Let S = {a, b, c} be a left zero semigroup. Then the Cayley table for S is as given below: A semigroup in which every element is a right zero element is called a right zero semigroup. Thus a semigroup S is a right zero semigroup if xy = y for all x and y in S. Let S = {a, b, c} be a right zero semigroup. Then the Cayley table for S is as given below: A non-trivial null (left/right zero) semigroup does not contain an identity element. It follows that the only null (left/right zero) monoid is the trivial monoid. The class of null semigroups is: closed under taking subsemigroups closed under taking quotient of subsemigroup closed under arbitrary direct products. It follows that the class of null (left/right zero) semigroups is a variety of universal algebra, and thus a variety of finite semigroups. The variety of finite null semigroups is defined by the identity ab = cd.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.