Computer Go is the field of artificial intelligence (AI) dedicated to creating a computer program that plays the traditional board game Go. The field is sharply divided into two eras. Before 2015, the programs of the era were weak. The best efforts of the 1980s and 1990s produced only AIs that could be defeated by beginners, and AIs of the early 2000s were intermediate level at best. Professionals could defeat these programs even given handicaps of 10+ stones in favor of the AI. Many of the algorithms such as alpha-beta minimax that performed well as AIs for checkers and chess fell apart on Go's 19x19 board, as there were too many branching possibilities to consider. Creation of a human professional quality program with the techniques and hardware of the time was out of reach. Some AI researchers speculated that the problem was unsolvable without creation of human-like AI.
The application of Monte Carlo tree search to Go algorithms provided a notable improvement in the late 2000s decade, with programs finally able to achieve a low-dan level: that of an advanced amateur. High-dan amateurs and professionals could still exploit these programs' weaknesses and win consistently, but computer performance had advanced past the intermediate (single-digit kyu) level. The tantalizing unmet goal of defeating the best human players without a handicap, long thought unreachable, brought a burst of renewed interest. The key insight proved to be an application of machine learning and deep learning. DeepMind, a Google acquisition dedicated to AI research, produced AlphaGo in 2015 and announced it to the world in 2016. AlphaGo defeated Lee Sedol, a 9 dan professional, in a no-handicap match in 2016, then defeated Ke Jie in 2017, who at the time continuously held the world No. 1 ranking for two years. Just as checkers had fallen to machines in 1995 and chess in 1997, computer programs finally conquered humanity's greatest Go champions in 2016–2017.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student carries out an academic or industrial master's project. The student will use skills and knowledge to accomplish an independent Master in Cybersecurity
The student carries out an academic or industrial master's project. The student will use the required skills and knowledge to accomplish an independent Master in Data Science.
The student carries out an academic or industrial master's project. The student will use the required skills and knowledge to accomplish an independent Master in Computer Science.
Covers planning with adversaries, heuristic search algorithms, and strategies for games with chance, emphasizing the significance of deliberative agents.
AlphaGo is a computer program that plays the board game Go. It was developed by the London-based DeepMind Technologies, an acquired subsidiary of Google (now Alphabet Inc.). Subsequent versions of AlphaGo became increasingly powerful, including a version that competed under the name Master. After retiring from competitive play, AlphaGo Master was succeeded by an even more powerful version known as AlphaGo Zero, which was completely self-taught without learning from human games.
DeepMind Technologies Limited, doing business as Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014, becoming a wholly owned subsidiary of Google parent company Alphabet Inc. after Google's corporate restructuring in 2015. The company is based in London, with research centres in Canada, France, and the United States.
In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Algorithms are everywhere.The recipe for the frangipane cake is an algorithm.If all the listed ingredients are available and the cook is sufficiently deft, after a finite number of small, well-defined steps a delicious dessert will exit the oven.Now, what ...
Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although rec ...
Artificial intelligence has been an ultimate design goal since the inception of computers decades ago. Among the many attempts towards general artificial intelligence, modern machine learning successfully tackles many complex problems thanks to the progres ...