In electrical engineering, single-phase electric power (abbreviated 1φ) is the distribution of alternating current electric power using a system in which all the voltages of the supply vary in unison. Single-phase distribution is used when loads are mostly lighting and heating, with few large electric motors. A single-phase supply connected to an alternating current electric motor does not produce a rotating magnetic field; single-phase motors need additional circuits for starting (capacitor start motor), and such motors are uncommon above 10 kW in rating.
Because the voltage of a single phase system reaches a peak value twice in each cycle, the instantaneous power is not constant.
Standard frequencies of single-phase power systems are either 50 or 60 Hz. Special single-phase traction power networks may operate at 16.67 Hz or other frequencies to power electric railways.
Single phase power transmission took many years to develop. The earliest developments were based on the early alternator inventions of 19th century Parisian scientist Hippolyte Pixii, which were later expanded upon by Lord Kelvin and others in the 1880s. The first full AC power system, based on single phase alternating current, was created by William Stanley with financial support from Westinghouse in 1886. In 1897, experiments began for single phase power transmission.
In North America, individual residences and small commercial buildings with services up to about 100 kVA (417 amperes at 240 volts) will usually have three-wire single-phase distribution, especially in rural areas where motor loads are small and uncommon. In rural areas where no three-phase supply is available, farmers or households who wish to use three-phase motors may install a phase converter. Larger consumers such as large buildings, shopping centers, factories, office blocks, and multiple-unit apartment blocks will have three-phase service. In densely populated areas of cities, network power distribution is used with many customers and many supply transformers connected to provide hundreds or thousands of kVA, a load concentrated over a few hundred square meters.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course focuses on the dynamic behavior of a power system. It presents the basic definitions, concepts and models for angular stability analysis with reference to transient stability, steady state
The learning outcome is to increase the knowledge of simulation methods and the role of computers in the management and the operation of electric power systems.
Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer
An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type. Three-phase squirrel-cage induction motors are widely used as industrial drives because they are self-starting, reliable, and economical.
Railway electrification is the use of electric power for the propulsion of rail transport. Electric railways use either electric locomotives (hauling passengers or freight in separate cars), electric multiple units (passenger cars with their own motors) or both. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines, but most purchase power from an electric utility.
In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The ground circuit is connected to earth, and neutral circuit is usually connected to ground. As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures.
The representation of Arctic clouds and their phase distributions, i.e., the amount of ice and supercooled water, influences predictions of future Arctic warming. Therefore, it is essential that cloud phase is correctly captured by models in order to accur ...
Environmental concerns are leading to a fast transition in electric power systems towards replacing fossil fuel and nuclear generation with renewable generation. This transition has two significant implications for electric power systems:1-The capacity of ...
EPFL2022
,
Time-synchronization attacks on phasor measurement units (PMUs) pose a real threat to smart grids; it was shown that they are feasible in practice and that they can have a nonnegligible negative impact on state estimation, without triggering the bad data d ...