Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1. Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi- with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. The x occurring in a polynomial is commonly called a variable or an indeterminate. When the polynomial is considered as an expression, x is a fixed symbol which does not have any value (its value is "indeterminate"). However, when one considers the function defined by the polynomial, then x represents the argument of the function, and is therefore called a "variable". Many authors use these two words interchangeably. A polynomial P in the indeterminate x is commonly denoted either as P or as P(x). Formally, the name of the polynomial is P, not P(x), but the use of the functional notation P(x) dates from a time when the distinction between a polynomial and the associated function was unclear.
Cécile Hébert, Duncan Alexander, James Badro, Farhang Nabiei, Hui Chen
Mathieu Salzmann, Alexandre Massoud Alahi, Megh Hiren Shukla