Concept

One-dimensional symmetry group

A one-dimensional symmetry group is a mathematical group that describes symmetries in one dimension (1D). A pattern in 1D can be represented as a function f(x) for, say, the color at position x. The only nontrivial point group in 1D is a simple reflection. It can be represented by the simplest Coxeter group, A1, [ ], or Coxeter-Dynkin diagram . Affine symmetry groups represent translation. Isometries which leave the function unchanged are translations x + a with a such that f(x + a) = f(x) and reflections a − x with a such that f(a − x) = f(x). The reflections can be represented by the affine Coxeter group [∞], or Coxeter-Dynkin diagram representing two reflections, and the translational symmetry as [∞]+, or Coxeter-Dynkin diagram as the composite of two reflections. For a pattern without translational symmetry there are the following possibilities (1D point groups): the symmetry group is the trivial group (no symmetry) the symmetry group is one of the groups each consisting of the identity and reflection in a point (isomorphic to Z2) These affine symmetries can be considered limiting cases of the 2D dihedral and cyclic groups: Consider all patterns in 1D which have translational symmetry, i.e., functions f(x) such that for some a > 0, f(x + a) = f(x) for all x. For these patterns, the values of a for which this property holds form a group. We first consider patterns for which the group is discrete, i.e., for which the positive values in the group have a minimum. By rescaling we make this minimum value 1. Such patterns fall in two categories, the two 1D space groups or line groups. In the simpler case the only isometries of R which map the pattern to itself are translations; this applies, e.g., for the pattern − −−− − −−− − −−− − −−− Each isometry can be characterized by an integer, namely plus or minus the translation distance. Therefore the symmetry group is Z. In the other case, among the isometries of R which map the pattern to itself there are also reflections; this applies, e.g.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CH-250: Mathematical methods in chemistry
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MSE-100: Materials structure
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux. Des travaux pratiques en
Afficher plus
Séances de cours associées (31)
Symétrie et théorie des groupes: ensemble d'exercices 3
Couvre l'ensemble d'exercices 3 sur la symétrie et la théorie des groupes, en se concentrant sur les molécules chirales, les groupes ponctuels, la conjugaison et les propriétés des groupes.
Symétrie et théorie des groupes : exercice 5
Couvre la base des représentations irréductibles et des caractères des représentations directes des produits.
Symmetry Elements & Opérations
Couvre les éléments de symétrie, les groupes de points et les opérations de symétrie mathématique.
Afficher plus
Publications associées (42)
Concepts associés (9)
Coxeter notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram.
Orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.
Point groups in two dimensions
In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.