Concept

One-dimensional symmetry group

A one-dimensional symmetry group is a mathematical group that describes symmetries in one dimension (1D). A pattern in 1D can be represented as a function f(x) for, say, the color at position x. The only nontrivial point group in 1D is a simple reflection. It can be represented by the simplest Coxeter group, A1, [ ], or Coxeter-Dynkin diagram . Affine symmetry groups represent translation. Isometries which leave the function unchanged are translations x + a with a such that f(x + a) = f(x) and reflections a − x with a such that f(a − x) = f(x). The reflections can be represented by the affine Coxeter group [∞], or Coxeter-Dynkin diagram representing two reflections, and the translational symmetry as [∞]+, or Coxeter-Dynkin diagram as the composite of two reflections. For a pattern without translational symmetry there are the following possibilities (1D point groups): the symmetry group is the trivial group (no symmetry) the symmetry group is one of the groups each consisting of the identity and reflection in a point (isomorphic to Z2) These affine symmetries can be considered limiting cases of the 2D dihedral and cyclic groups: Consider all patterns in 1D which have translational symmetry, i.e., functions f(x) such that for some a > 0, f(x + a) = f(x) for all x. For these patterns, the values of a for which this property holds form a group. We first consider patterns for which the group is discrete, i.e., for which the positive values in the group have a minimum. By rescaling we make this minimum value 1. Such patterns fall in two categories, the two 1D space groups or line groups. In the simpler case the only isometries of R which map the pattern to itself are translations; this applies, e.g., for the pattern − −−− − −−− − −−− − −−− Each isometry can be characterized by an integer, namely plus or minus the translation distance. Therefore the symmetry group is Z. In the other case, among the isometries of R which map the pattern to itself there are also reflections; this applies, e.g.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.