Concept

One-dimensional symmetry group

Concepts associés (7)
Coxeter notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram.
Orbifold notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration.
Point groups in two dimensions
In geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Groupe de frise
Un groupe de frise, en mathématiques, est un sous-groupe du groupe des isométries affines du plan euclidien tel que l'ensemble des translations qu'il contient forme lui-même un groupe isomorphe au groupe Z des entiers relatifs. Une frise est alors une partie du plan telle que l'ensemble des isométries qui la laissent globalement invariante est un groupe de frise. Usuellement, une frise est représentée par un motif se répétant périodiquement dans une direction donnée. Ce concept modélise les frises utilisées en architecture ou en décoration.
Groupe d'espace
Le groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Groupe de papier peint
Un groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
Groupe discret
In mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.