In mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups, the theory of finite rings is simpler than that of finite groups. For instance, the classification of finite simple groups was one of the major breakthroughs of 20th century mathematics, its proof spanning thousands of journal pages. On the other hand, it has been known since 1907 that any finite simple ring is isomorphic to the ring of n-by-n matrices over a finite field of order q (as a consequence of Wedderburn's theorems, described below). The number of rings with m elements, for m a natural number, is listed under in the On-Line Encyclopedia of Integer Sequences. Finite field and Finite field arithmetic The theory of finite fields is perhaps the most important aspect of finite ring theory due to its intimate connections with algebraic geometry, Galois theory and number theory. An important, but fairly old aspect of the theory is the classification of finite fields: The order or number of elements of a finite field equals pn, where p is a prime number called the characteristic of the field, and n is a positive integer. For every prime number p and positive integer n, there exists a finite field with pn elements. Any two finite fields with the same order are isomorphic. Despite the classification, finite fields are still an active area of research, including recent results on the Kakeya conjecture and open problems regarding the size of smallest primitive roots (in number theory). A finite field F may be used to build a vector space of n-dimensions over F. The matrix ring A of n × n matrices with elements from F is used in Galois geometry, with the projective linear group serving as the multiplicative group of A.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (24)
ME-372: Finite element method
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Afficher plus
Publications associées (32)

Correspondence functors and duality

Jacques Thévenaz, Serge Bouc

A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023
Afficher plus
Personnes associées (1)
Concepts associés (1)
Multiplicative group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts: the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).. The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.