A physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
In the 1960s Bernard Widrow and Ted Hoff developed ADALINE (Adaptive Linear Neuron) which used electrochemical cells called memistors (memory resistors) to emulate synapses of an artificial neuron. The memistors were implemented as 3-terminal devices operating based on the reversible electroplating of copper such that the resistance between two of the terminals is controlled by the integral of the current applied via the third terminal. The ADALINE circuitry was briefly commercialized by the Memistor Corporation in the 1960s enabling some applications in pattern recognition. However, since the memistors were not fabricated using integrated circuit fabrication techniques the technology was not scalable and was eventually abandoned as solid-state electronics became mature.
In 1989 Carver Mead published his book Analog VLSI and Neural Systems, which spun off perhaps the most common variant of analog neural networks. The physical realization is implemented in analog VLSI. This is often implemented as field effect transistors in low inversion. Such devices can be modelled as translinear circuits. This is a technique described by Barrie Gilbert in several papers around mid 1970th, and in particular his Translinear Circuits from 1981. With this method circuits can be analyzed as a set of well-defined functions in steady-state, and such circuits assembled into complex networks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain. A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations. In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems (for perception, motor control, or multisensory integration).
This article summarizes the recent advancements in the design, fabrication, and control of microrobotic devices for the diagnosis and treatment of brain disorders. With a focus on diverse actuation methods, we discuss how advancements in materials science ...
2024
, , ,
Interpretability for neural networks is a trade-off between three key requirements: 1) faithfulness of the explanation (i.e., how perfectly it explains the prediction), 2) understandability of the explanation by humans, and 3) model performance. Most exist ...
In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can creat ...