In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting. Analogously to the finite-dimensional situation, one can define a differentiable Hilbert manifold by considering a maximal atlas in which the transition maps are differentiable.
Many basic constructions of the manifold theory, such as the tangent space of a manifold and a tubular neighbourhood of a submanifold (of finite codimension) carry over from the finite dimensional situation to the Hilbert setting with little change. However, in statements involving maps between manifolds, one often has to restrict consideration to Fredholm maps, that is, maps whose differential at every point is Fredholm. The reason for this is that Sard's lemma holds for Fredholm maps, but not in general. Notwithstanding this difference, Hilbert manifolds have several very nice properties.
Kuiper's theorem: If is a compact topological space or has the homotopy type of a CW complex then every (real or complex) Hilbert space bundle over is trivial. In particular, every Hilbert manifold is parallelizable.
Every smooth Hilbert manifold can be smoothly embedded onto an open subset of the model Hilbert space.
Every homotopy equivalence between two Hilbert manifolds is homotopic to a diffeomorphism. In particular every two homotopy equivalent Hilbert manifolds are already diffeomorphic. This stands in contrast to lens spaces and exotic spheres, which demonstrate that in the finite-dimensional situation, homotopy equivalence, homeomorphism, and diffeomorphism of manifolds are distinct properties.
Although Sard's Theorem does not hold in general, every continuous map from a Hilbert manifold can be arbitrary closely approximated by a smooth map which has no critical points.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space (for example could be a topological space, a manifold, or an algebraic variety): to every point of the space we associate (or "attach") a vector space in such a way that these vector spaces fit together to form another space of the same kind as (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over .
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Given two manifolds and , a differentiable map is called a diffeomorphism if it is a bijection and its inverse is differentiable as well. If these functions are times continuously differentiable, is called a -diffeomorphism. Two manifolds and are diffeomorphic (usually denoted ) if there is a diffeomorphism from to .
In differential geometry, a Riemannian manifold or Riemannian space (M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p. The family gp of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions are smooth functions.
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
The formalism for non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbeinlike formalism which transforms the Hilbert space bundles of non-Hermitian systems into the conventional ones, rendering th ...
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...