Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is the opsin of the rod cells in the retina and a light-sensitive receptor protein that triggers visual phototransduction in rods. Rhodopsin mediates dim light vision and thus is extremely sensitive to light. When rhodopsin is exposed to light, it immediately photobleaches. In humans, it is regenerated fully in about 30 minutes, after which the rods are more sensitive. Defects in the rhodopsin gene cause eye diseases such as retinitis pigmentosa and congenital stationary night blindness.
Rhodopsin was discovered by Franz Christian Boll in 1876. The name rhodospsin derives from Ancient Greek ῥόδον () for "rose", due to its pinkish color, and ὄψις () for "sight". It was coined in 1878 by the German physiologist Wilhelm Friedrich Kühne (1837-1900).
When George Wald discovered that rhodopsin is a holoprotein, consisting of retinal and an apoprotein, he called it opsin, which today would be described more narrowly as apo-rhodopsin. Today, the term opsin refers more broadly to the class of G-protein-coupled receptors that bind retinal and as a result become a light sensitive photoreceptor, including all closely related proteins. When Wald and colleges later isolated iodopsin from chicken retinas, thereby discovering the first known cone opsin, they called apo-iodopsin photopsin (for its relation to photopic vision) and apo-rhodopsin scotopsin (for its use in scotopic vision).
Rhodopsin is a protein found in the outer segment discs of rod cells. It mediates scotopic vision, which is monochromatic vision in dim light. Rhodopsin most strongly absorbs green-blue light (~500 nm) and appears therefore reddish-purple, hence the archaic term "visual purple".
Several closely related opsins differ only in a few amino acids and in the wavelengths of light that they absorb most strongly. Humans have, including rhodopsin, nine opsins, as well as cryptochrome (light-sensitive, but not an opsin).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
Retinal (also known as retinaldehyde) is a polyene chromophore. Retinal, bound to proteins called opsins, is the chemical basis of visual phototransduction, the light-detection stage of visual perception (vision). Some microorganisms use retinal to convert light into metabolic energy. In fact, a recent study suggests most living organisms on our planet ~3 billion years ago used retinal to convert sunlight into energy rather than chlorophyll. Since retinal absorbs mostly green light and transmits purple light, this gave rise to the Purple Earth Hypothesis.
Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in peripheral vision. On average, there are approximately 92 million rod cells (vs ~6 million cones) in the human retina. Rod cells are more sensitive than cone cells and are almost entirely responsible for night vision.
Visual phototransduction is the sensory transduction process of the visual system by which light is detected to yield nerve impulses in the rod cells and cone cells in the retina of the eye in humans and other vertebrates. It relies on the visual cycle, a sequence of biochemical reactions in which a molecule of retinal bound to opsin undergoes photoisomerization, initiates a cascade that signals detection of the photon, and is indirectly restored to its photosensitive isomer for reuse.
Sight restoration through retinal prostheses was still a mere dream a century ago. Current challenges are even greater: providing a quantitatively and qualitatively useful artificial vision to late blind patients. Existing approaches all face engineering a ...
EPFL2021
,
There is growing interest in organic semiconductor devices for light-mediated neuromodulation, such as for retinal stimulation. Here, the key working principles of these devices are discussed, as well as promising applications and outstanding challenges fo ...
Information about a moving object is usually poor at each retinotopic location because photoreceptor activation is short, noisy, and affected by shadows, reflections of other objects, and so on. Integration across the motion trajectory may yield a much bet ...