Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, the orbit-counting theorem, or the lemma that is not Burnside's, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms are based on William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to . Burnside's Lemma counts "orbits", which is the same thing as counting distinct objects taking account of a symmetry. Other ways of saying it are counting distinct objects up to an equivalence relation R, or counting objects that are in canonical form. In the following, let G be a finite group that acts on a set X. For each g in G, let Xg denote the set of elements in X that are fixed by g (also said to be left invariant by g), that is, Xg = { x ∈ X | g.x = x }. Burnside's lemma asserts the following formula for the number of orbits, denoted |X/G|: Thus the number of orbits (a natural number or +∞) is equal to the average number of points fixed by an element of G (which is also a natural number or infinity). If G is infinite, the division by |G| may not be well-defined; in this case the following statement in cardinal arithmetic holds: There are 8 possible bit vectors of length 3, but only four distinct 2-colored necklaces of length 3 (000, 001, 011, and 111), because 100 and 010 are equivalent to 001 by rotation, and similarly 110 and 101 are equivalent to 011. The formula is based on the number of rotations, which in this case is 3 (including the null rotation), and the number of bit vectors left unchanged by each rotation. All 8 bit vectors are unchanged by the null rotation, and two (000 and 111) are unchanged by each of the other two rotations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
Séances de cours associées (22)
Notions de base, Ch III: Actions de groupe
Explore les actions de groupe sur les décors, les orbites, les points fixes et les résultats classiques.
Groupes fondamentaux
Explore les groupes fondamentaux, les classes d'homotopie et les revêtements dans les variétés connectées.
Cohomologie : produit croisé
Explore la cohomologie et le produit croisé, démontrant son application dans des actions de groupe comme la conjugaison.
Afficher plus
Publications associées (1)
Concepts associés (3)
Invariant
En mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
À quelque chose près
En mathématiques, l'expression « à quelque chose près » peut avoir plusieurs sens différents. Elle peut indiquer la précision d'une valeur approchée ou d'une approximation. Par exemple, « a est une valeur approchée de x à ε près » signifie que la condition est vérifiée. Elle peut aussi signifier que des éléments d'une certaine classe d'équivalence doivent être considérés comme ne faisant qu'un. Dans l'expression à x(y) près, x (voire y) représente(nt) alors une propriété ou un processus qui transforme un élément en un autre de la même classe d'équivalence, c'est-à-dire en un élément considéré comme équivalent au premier.
Théorie des groupes
vignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.