**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Théorie des groupes

Résumé

vignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube.
La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie.
La théorie des groupes est étroitement liée à la théorie des représentations. Ensemble, elles ont plusieurs applications en physique théorique, chimie, science des matériaux et cryptographie asymétrique.
L'une des plus grandes avancées mathématiques du est la classification complète des groupes simples finis. Elle est le fruit d'une collaboration de plus de 100 auteurs à travers .
Histoire
L'une des origines de l'idée de groupe est l'étude des équations algébriques par Joseph-Louis Lagrange (1771). La terminologie de « groupe » est mise en évidence pour la première fois par Évariste Gal

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Publications associées (17)

Personnes associées (1)

Concepts associés (230)

Groupe (mathématiques)

vignette|Les manipulations possibles du Rubik's Cube forment un groupe.
En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'un

Mathématiques

thumb|upright|Raisonnement mathématique sur un tableau.
Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets

Sous-groupe normal

En théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représent

Chargement

Chargement

Chargement

Unités associées

Aucun résultat

Séances de cours associées (131)

Cours associés (51)

CH-250: Mathematical methods in chemistry

This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Fourier series and their use for solving ordinary and partial differential equations in chemistry & c.e.

PHYS-443: Physics of nuclear reactors

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain reaction.

MATH-410: Riemann surfaces

This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex domains under discontinuous group actions, as algebraic curves.

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involves gluing the branches back together. We are able to define combinatorial equivalence classes of merge trees and barcodes that allow us to completely solve this inverse problem. A barcode can be associated with an element in the symmetric group, and the number of trees with the same barcode, the tree realization number, depends only on the permutation type. We compare these combinatorial definitions of barcodes and trees to those of phylogenetic trees, thus describing the subtle differences between these spaces. The result is a clear combinatorial distinction between the phylogenetic tree space and the merge tree space.The representation of a barcode by a permutation not only gives a formula for the tree realization number, but also opens the door to deeper connections between inverse problems in topological data analysis, group theory, and combinatorics.Based on the combinatorial classes of barcodes, we construct a stratification of the barcode space. We define coordinates that partition the space of barcodes into regions indexed by the averages and the standard deviations of birth and death times and by the permutation type of a barcode. By associating to a barcode the coordinates of its region, we define a new invariant of barcodes.These equivalence classes define a stratification of the space of barcodes with n bars where the strata are indexed by the symmetric group on n letters and its parabolic subgroups.We study the realization numbers computed from barcodes with uniform permutation type (i.e., drawn from the uniform distribution on the symmetric group) and establish a fundamental null hypothesis for this invariant. We show that the tree realization number can be used as a statistic to distinguish distributions of trees by comparing neuronal trees to random barcode distributions.

The mathematical facet of modern crystallography is essentially based on analytical geometry, linear algebra as well as group theory. This study endeavours to approach the geometry and symmetry of crystals using the tools furnished by differential geometry and the theory of Lie groups. These two branches of mathematics being little known to crystallographers, the pertinent definitions such as differentiable manifold, tangent space or metric tensor or even isometries on a manifold together with some important results are given first. The example of euclidean space, taken as riemannian manifold, is treated, in order to show that the affine aspect of this space is not at all an axiom but the consequence of the euclidean nature of the manifold. Attention is then directed to a particular subgroup of the group of euclidean isometries, namely that of translations. This has the property of a Lie group and it turns out that the action of its elements, as well as those of its Lie algebra, plays an important role in generating a lattice on a manifold and in its tangent space, too. In particular, it is pointed out that one and only one finite and free module of the Lie algebra of the group of translations can generate both, modulated and non-modulated lattices. This last classification therefore appears continuous rather than black and white and is entirely determined by the parametrisation considered. Since a lattice in a tangent space has the properties of a vector space, it always possesses the structure of a finite, free module, which shows that the assignment of aperiodicity to modulated structures is quite subjective, even unmotivated. Thanks to the concept of representation of a lattice or a crystal in a tangent space, novel definitions of the notions of symmetry operation of a space group and point symmetry operation, as well as symmetry element and intrinsic translation arise; they altogether naturally blend into the framework of differential geometry. In order to conveniently pass from one representation of a crystal in one tangent space to another or to the structure on a manifold, an equivalence relation on the tangent bundle of the manifold is introduced. This relation furthermore allows to extend the concept of symmetry operation to the tangent bundle; this extension furnishes, particularly in the euclidean case, a very practical way of representing symmetry operations of space groups completely devoid of any dependence on an origin, or, in other words, in which each and every point may be considered the origin. The investigation of the group of translations having being completed, the study of the linear parts of the isometries comes naturally. Based on the fact that the set of linear parts possesses the structure of a Lie group, several results are proven in a rigorous manner, such as the fact that a rotation angle of π/3 is incompatible with a three-dimensional cubic lattice. Procedures for determining different crystal systems in function of the type of rotation are laid out by way of the study of orthogonal matrices and their relation to the matrix associated with the type of system. Finally, the description of a crystal by its diffraction patterns is taken on. It is shown that the general aspect of such a pattern is directly linked to the action of that free and finite module of the Lie algebra of translations which generates a lattice on a manifold. In the case of modulated crystals, it is demonstrated that the appearance of supplementary spots is caused by the geometry, i.e. by the parametrisation of the manifold in which the crystal exists and not by the action of the module in the Lie algebra. Thus, there exists a neat separation: the geometrical aspect on the one hand, and the action of the group on the other. As the last topic, other ways of interpreting the diffraction pattern of a modulated structure are laid out in order to argue that mere experimental data do not warrant the uniqueness of a model. The goal of this study is by no means an attempt at overthrowing existing structural models such as the superspace-formalism or at revolutionising the methods for determining structures, but is rather aimed at sustaining that the definition of certain notions becomes thoroughly natural within the appropriate mathematical framework, and, that the term aperiodicity assigned to modulated structures no longer has a true meaning.

,

A general formalism for the maximal symmetrization and reduction of fields (MSRFs) is proposed and applied to wave functions in solid-state nanostructures. Its primary target is to provide an essential tool for the study and analysis of the electronic and optical properties of semiconductor quantum heterostructures with relatively high point-group symmetry and studied with the k center dot p formalism. Nevertheless the approach is valid in a much larger framework than k center dot p theory; it is applicable to arbitrary systems of coupled partial differential equations (e.g., strain equations or Maxwell equations). This general MSRF formalism makes extensive use of group theory at all levels of analysis. For spinless problems (scalar equations), one can use a systematic spatial domain reduction (SDR) technique which allows, for every irreducible representation, to reduce the set of equations on a minimal domain with automatic incorporation of the boundary conditions at the border, which are shown to be nontrivial in general. For a vectorial or spinorial set of functions, the SDR technique must be completed by the use of an optimal basis in vectorial or spinorial space (in a crystal we call it the optimal Bloch function basis). The full MSR formalism thus consists of three steps: (1) explicitly separate spatial (or Fourier space) and vectorial (spinorial) part of the operators and eigenstates, (2) choose, according to the symmetry and well defined prescriptions (e.g., specific transformation properties), optimal fully symmetrized basis for both spatial and vector (or spin) space, and (3) finally apply the SDR to every individual scalar ultimate component function. We show that with such a formalism the coupling between different vectorial (spinorial) components by symmetry operations becomes minimized and every ultimately reduced envelope function acquires a well-defined specific symmetry. The advantages are numerous: sharper insights on the symmetry properties of every eigenstate, minimal coupling schemes (analytically and computationally exploitable at the component function level), and minimal computing domains. The formalism can be applied also as a postprocessing operation, offering all subsequent analytical and computational advantages of symmetrization. The specific case of a quantum wire with C-3v point group symmetry is used as a concrete illustration of the application of MSRF.

2010