Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science.
While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. Frege's Begriffsschrift (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic. His Foundations of Arithmetic, published in 1884, expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential Principia Mathematica, first published 1910–1913, and with a revised second edition in 1927. Russell and Whitehead thought they could derive all mathematical truth using axioms and inference rules of formal logic, in principle opening up the process to automatisation. In 1920, Thoralf Skolem simplified a previous result by Leopold Löwenheim, leading to the Löwenheim–Skolem theorem and, in 1930, to the notion of a Herbrand universe and a Herbrand interpretation that allowed (un)satisfiability of first-order formulas (and hence the validity of a theorem) to be reduced to (potentially infinitely many) propositional satisfiability problems.
In 1929, Mojżesz Presburger showed that the theory of natural numbers with addition and equality (now called Presburger arithmetic in his honor) is decidable and gave an algorithm that could determine if a given sentence in the language was true or false.
However, shortly after this positive result, Kurt Gödel published On Formally Undecidable Propositions of Principia Mathematica and Related Systems (1931), showing that in any sufficiently strong axiomatic system there are true statements which cannot be proved in the system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Formally verifying the correctness of software is necessary to merit the trust people put in software systems. Currently, formal verification requires human effort to prove that a piece of code matches its specification and code changes to improve verifiab ...
Motivated by the transfer of proofs between proof systems, and in particular from first order automated theorem provers (ATPs) to interactive theorem provers (ITPs), we specify an extension of the TPTP derivation text format to describe proofs in first-ord ...
2024
,
This data set provides a computer-assisted proof for the kernel inequalities needed to prove universal optimality in the paper "Universal optimality of the E_8 and Leech lattices and interpolation formulas" (by Cohn, Kumar, Miller, Radchenko, and Viazovska ...