Apollonius of Perga (Ἀπολλώνιος ὁ Περγαῖος ; 240 BC-190 BC) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.
Aside from geometry, Apollonius worked on numerous other topics, including astronomy. Most of this work has not survived, where exceptions are typically fragments referenced by other authors like Pappus of Alexandria. His hypothesis of eccentric orbits to explain the apparently aberrant motion of the planets, commonly believed until the Middle Ages, was superseded during the Renaissance. The Apollonius crater on the Moon is named in his honor.
For such an important contributor to the field of mathematics, scant biographical information remains. The 6th century Greek commentator Eutocius of Ascalon, writing on Apollonius' Conics, states:
Apollonius, the geometrician, ... came from Perga in Pamphylia in the times of Ptolemy III Euergetes, so records Herakleios the biographer of Archimedes ....
From this passage Apollonius can be approximately dated, but specific birth and death years stated by modern scholars are only speculative. Ptolemy III Euergetes ("benefactor") was third Greek dynast of Egypt in the Diadochi succession, who reigned 246–222/221 BC. "Times" are always recorded by ruler or officiating magistrate, so Apollonius was likely born after 246. The identity of Herakleios is uncertain.
Perga was a Hellenized city in Pamphylia, Anatolia, whose ruins yet stand. It was a center of Hellenistic culture. Eutocius appears to associate Perga with the Ptolemaic dynasty of Egypt. Never under Egypt, Perga in 246 BC belonged to the Seleucid Empire, an independent diadochi state ruled by the Seleucid dynasty.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly attested from the late 7th century BC to the 6th century AD, around the shores of the Mediterranean. Greek mathematicians lived in cities spread over the entire region, from Anatolia to Italy and North Africa, but were united by Greek culture and the Greek language. The development of mathematics as a theoretical discipline and the use of proofs is an important difference between Greek mathematics and those of preceding civilizations.
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.
In classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC to the death of Cleopatra VII (30 BC) followed by the emergence of the Roman Empire, as signified by the Battle of Actium in 31 BC and the conquest of Ptolemaic Egypt the following year. The Ancient Greek word Hellas (Ἑλλάς, Hellás) was gradually recognized as the name for Greece, from which the word Hellenistic was derived.
A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust met ...
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) al ...
Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distributions, n(z); of tomographic redshift bins. We determine whether the mean redshift, < z >, of ten Euclid tomogra ...