Concepts associés (29)
Mathématiques de la Grèce antique
vignette|right|250px|Illustration de la preuve d'Euclide du théorème de Pythagore. Les mathématiques de la Grèce antique sont les mathématiques développées en langue grecque, autour de la mer Méditerranée, durant les époques classique et hellénistique. Elles couvrent ainsi une période allant du jusqu'au de notre ère. Les mathématiques hellénistiques incluent toutes celles écrites en grec. Elles englobent donc les mathématiques égyptiennes et babyloniennes d'une grande partie de cette époque.
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Époque hellénistique
thumb|Gaulois blessé de Délos, thème apparu dans la sculpture hellénistique à la suite de la victoire d’Attale de Pergame sur les Gaulois v. , musée national archéologique d'Athènes. Lépoque hellénistique est une période chronologique de l'histoire de la Grèce antique. Elle s'étend de la fin de l'époque classique, soit la mort d'Alexandre le Grand en 323 av. J.-C., à la défaite de Cléopâtre VII à la bataille d'Actium en 31 av. J.-C., laquelle marque l'achèvement de la mise en place de la domination romaine sur le monde grec.
Thomas Heath
Thomas Little Heath (né le à Bartnetby le Wold, dans le Lincolnshire, mort le à Ashtead dans le Surrey) est un haut fonctionnaire britannique, surtout connu pour ses travaux sur l'histoire des mathématiques de la Grèce antique, effectués en marge de sa carrière officielle. À la fois mathématicien et helléniste, Heath traduisit du grec ancien en anglais les œuvres d’Euclide d’Alexandrie, d’Apollonius de Perga, d’Aristarque de Samos, et d’Archimède de Syracuse. C'était également un grand alpiniste, qui fréquenta longuement le massif des Dolomites.
Triangle de Sierpiński
Le triangle de Sierpiński, ou tamis de Sierpińsky, également appelé par Mandelbrot le joint de culasse de Sierpiński, est une fractale, du nom de Wacław Sierpiński qui l'a décrit en 1915. Il peut s'obtenir à partir d'un triangle « plein », par une infinité de répétitions consistant à diviser par deux la taille du triangle puis à les accoler en trois exemplaires par leurs sommets pour former un nouveau triangle. À chaque répétition le triangle est donc de même taille, mais « de moins en moins plein ».
Pappus d'Alexandrie
NOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
François Viète
François Viète, ou François Viette, en latin Franciscus Vieta, est un mathématicien français, né à Fontenay-le-Comte (Vendée) en 1540 et mort à Paris le . De famille bourgeoise et de formation juridique, il a été l'avocat de grandes familles protestantes, dont les Parthenay-l'Archevêque et les Rohan, avant de devenir conseiller, puis maître des requêtes au parlement de Rennes, sous , puis maître des requêtes ordinaires de l'hôtel du roi sous .
Pierre de Fermat
Pierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Fonction quadratique
En mathématiques, une fonction quadratique est une fonction de plusieurs variables polynomiale de degré 2. Cette notion généralise ainsi celle de fonction du second degré. Elle réalise aussi la partie régulière du développement de Taylor à l’ordre 2 pour une fonction de plusieurs variables. La matrice hessienne associée est la même en tout point, et ne dépend que de la forme quadratique constituée par les termes de degré 2. Elle permet aussi d’écrire le système d'équations linéaires qui détermine les points critiques de la fonction.
Asymptote
Le terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.