Concept

Regular extension

In field theory, a branch of algebra, a field extension is said to be regular if k is algebraically closed in L (i.e., where is the set of elements in L algebraic over k) and L is separable over k, or equivalently, is an integral domain when is the algebraic closure of (that is, to say, are linearly disjoint over k). Regularity is transitive: if F/E and E/K are regular then so is F/K. If F/K is regular then so is E/K for any E between F and K. The extension L/k is regular if and only if every subfield of L finitely generated over k is regular over k. Any extension of an algebraically closed field is regular. An extension is regular if and only if it is separable and primary. A purely transcendental extension of a field is regular. There is also a similar notion: a field extension is said to be self-regular if is an integral domain. A self-regular extension is relatively algebraically closed in k. However, a self-regular extension is not necessarily regular.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.