Summary
Sir Roger Penrose (born 8 August 1931) is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London. Penrose has contributed to the mathematical physics of general relativity and cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity". He is regarded as one of the greatest living physicists, mathematicians and scientists, and is particularly noted for the breadth and depth of his work in both natural and formal sciences. Born in Colchester, Essex, Roger Penrose is a son of medical doctor Margaret (Leathes) and psychiatrist and geneticist Lionel Penrose. His paternal grandparents were J. Doyle Penrose, an Irish-born artist, and The Hon. Elizabeth Josephine, daughter of Alexander Peckover, 1st Baron Peckover; his maternal grandparents were physiologist John Beresford Leathes and Russian Jewish Sonia Marie Natanson. His uncle was artist Roland Penrose, whose son with photographer Lee Miller is Antony Penrose. Penrose is the brother of physicist Oliver Penrose, of geneticist Shirley Hodgson, and of chess Grandmaster Jonathan Penrose. Their stepfather was the mathematician and computer scientist Max Newman. Penrose spent World War II as a child in Canada where his father worked in London, Ontario. Penrose studied at University College School. He attended University College London and attained a first class degree in mathematics from University of London in 1952. In 1955, while a student, Penrose reintroduced the E. H. Moore generalised matrix inverse, also known as the Moore–Penrose inverse, after it had been reinvented by Arne Bjerhammar in 1951.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
Related lectures (11)
Penrose Diagrams: Spacetime Visualization
Explores Penrose diagrams for visualizing black hole spacetime, emphasizing the eternal nature of black holes formed by gravitational collapse.
Kruskal Coordinates: Schwarzschild Black Holes
Explores Kruskal coordinates and Schwarzschild black holes in General Relativity, including Einstein equations and cosmological constants.
Mahler's Symphonies: Structure and Meaning
Explores Gustav Mahler's symphonies, focusing on his unique style and the conceptual depth of specific works.
Show more
Related publications (2)
Related concepts (26)
Stephen Hawking
Stephen William Hawking (8 January 1942 – 14 March 2018) was an English theoretical physicist, cosmologist, and author who, at the time of his death, was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at the University of Cambridge, widely viewed as one of the most prestigious academic posts in the world. Hawking was born in Oxford into a family of physicians.
Special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates: The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
Cosmic censorship hypothesis
The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typically hidden within event horizons, and therefore cannot be observed from the rest of spacetime. Singularities that are not so hidden are called naked. The weak cosmic censorship hypothesis was conceived by Roger Penrose in 1969 and posits that no naked singularities exist in the universe.
Show more