Concept

Special relativity

Summary
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates: The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. History of special relativity Special relativity was described by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies". Maxwell's equations of electromagnetism appeared to be incompatible with Newtonian mechanics, and the Michelson–Morley null result failed to detect the Earth's motion against the hypothesized luminiferous aether. These led to the development of the Lorentz transformations, which adjust distances and times for moving objects. Special relativity corrects the hitherto laws of mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as ). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational and quantum effects are negligible. Even so, the Newtonian model is still valid as a simple and accurate approximation at low velocities (relative to the speed of light), for example, everyday motions on Earth. Special relativity has a wide range of consequences that have been experimentally verified. They include the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession. It has, for example, replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and spatial position. Rather than an invariant time interval between two events, there is an invariant spacetime interval.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.