Summary
The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome. Relative risk is used in the statistical analysis of the data of ecological, cohort, medical and intervention studies, to estimate the strength of the association between exposures (treatments or risk factors) and outcomes. Mathematically, it is the incidence rate of the outcome in the exposed group, , divided by the rate of the unexposed group, . As such, it is used to compare the risk of an adverse outcome when receiving a medical treatment versus no treatment (or placebo), or for environmental risk factors. For example, in a study examining the effect of the drug apixaban on the occurrence of thromboembolism, 8.8% of placebo-treated patients experienced the disease, but only 1.7% of patients treated with the drug did, so the relative risk is .19 (1.7/8.8): patients receiving apixaban had 19% the disease risk of patients receiving the placebo. In this case, apixaban is a protective factor rather than a risk factor, because it reduces the risk of disease. Assuming the causal effect between the exposure and the outcome, values of relative risk can be interpreted as follows: RR = 1 means that exposure does not affect the outcome RR < 1 means that the risk of the outcome is decreased by the exposure, which is a "protective factor" RR > 1 means that the risk of the outcome is increased by the exposure, which is a "risk factor" As always, correlation does not mean causation; the causation could be reversed, or they could both be caused by a common confounding variable. The relative risk of having cancer when in the hospital versus at home, for example, would be greater than 1, but that is because having cancer causes people to go to the hospital.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p