A list comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions. Consider the following example in set-builder notation. or often This can be read, " is the set of all numbers "2 times " SUCH THAT is an ELEMENT or MEMBER of the set of natural numbers (), AND squared is greater than ." The smallest natural number, x = 1, fails to satisfy the condition x2>3 (the condition 12>3 is false) so 2 ·1 is not included in S. The next natural number, 2, does satisfy the condition (22>3) as does every other natural number. Thus x consists of 2, 3, 4, 5... Since the set consists of all numbers "2 times x" it is given by S = {4, 6, 8, 10,...}. S is, in other words, the set of all even numbers greater than 2. In this annotated version of the example: is the variable representing members of an input set. represents the input set, which in this example is the set of natural numbers is a predicate expression acting as a filter on members of the input set. is an output expression producing members of the new set from members of the input set that satisfy the predicate expression. braces indicate that the result is a set the vertical bar is read as "SUCH THAT". The bar and the colon ":" are used interchangeably. commas separate the predicates and can be read as "AND". A list comprehension has the same syntactic components to represent generation of a list in order from an input list or iterator: A variable representing members of an input list. An input list (or iterator). An optional predicate expression. And an output expression producing members of the output list from members of the input iterable that satisfy the predicate. The order of generation of members of the output list is based on the order of items in the input. In Haskell's list comprehension syntax, this set-builder construct would be written similarly, as: s = [ 2*x | x

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CS-119(h): Information, Computation, Communication
L'objectif de ce cours est d'initier les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'informatique et des communications et de développer une première compétence
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
CS-214: Software construction
Learn how to design and implement reliable, maintainable, and efficient software using a mix of programming skills (declarative style, higher-order functions, inductive types, parallelism) and fundam
Show more
Related publications (14)
Related people (2)
Related concepts (16)
Haskell
Haskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Scala (programming language)
Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Set (abstract data type)
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set. Some set data structures are designed for static or frozen sets that do not change after they are constructed.
Show more