Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid. It achieves this in the absence of a seed crystal or nucleus around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to . Droplets of supercooled water often exist in stratus and cumulus clouds. An aircraft flying through such a cloud sees an abrupt crystallization of these droplets, which can result in the formation of ice on the aircraft's wings or blockage of its instruments and probes.
Animals rely on different phenomena with similar effects to survive in extreme temperatures.
There are many other mechanisms that aid in maintaining a liquid state, such as the production of antifreeze proteins, which bind to ice crystals to prevent water molecules from binding and spreading the growth of ice. The winter flounder is one such fish that utilizes these proteins to survive in its frigid environment.
This is not strictly supercooling because is the result of freezing point lowering caused by the presence of proteins.
In plants, cellular barriers such as lignin, suberin, and the cuticle inhibit ice nucleators and force water into the supercooled tissue.
A liquid crossing its standard freezing point will crystalize in the presence of a seed crystal or nucleus around which a crystal structure can form creating a solid. Lacking any such nuclei, the liquid phase can be maintained all the way down to the temperature at which crystal homogeneous nucleation occurs.
Homogeneous nucleation can occur above the glass transition temperature, but if homogeneous nucleation has not occurred above that temperature, an amorphous (non-crystalline) solid will form.
Water normally freezes at , but it can be "supercooled" at standard pressure down to its crystal homogeneous nucleation at almost .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une introduction aux transformations de phases liquide-solide et solide-solide. Il aborde les aspects thermodynamiques et cristallographiques. Il traite principalement des matériaux métal
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matter.
Freezing is a phase transition where a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid or the liquid content of a substance, usually due to cooling. For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures. For example, agar displays a hysteresis in its melting point and freezing point.
In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled (at atmospheric pressure) below 0 °C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0 °C often stay completely free of ice for long periods (supercooling).
Heterogeneous ice nucleation is a ubiquitous process in the natural and built environment. Deposition ice nucleation, i.e. heterogeneous ice nucleation that - according to the traditional view - occurs in a subsaturated water vapor environment and in the a ...
Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a ...
Natl Acad Sciences2024
,
We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in ...