In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use. Most biological molecules and pharmaceutical targets exist as one of two possible enantiomers; consequently, chemical syntheses of natural products and pharmaceutical agents are frequently designed to obtain the target in enantiomerically pure form. Chiral auxiliaries are one of many strategies available to synthetic chemists to selectively produce the desired stereoisomer of a given compound. Chiral auxiliaries were introduced by Elias James Corey in 1975 with chiral 8-phenylmenthol and by Barry Trost in 1980 with chiral mandelic acid. The menthol compound is difficult to prepare and as an alternative trans-2-phenyl-1-cyclohexanol was introduced by J. K. Whitesell in 1985. Chiral auxiliaries are incorporated into synthetic routes to control the absolute configuration of stereogenic centers. David A. Evans' synthesis of the macrolide cytovaricin, considered a classic, utilizes oxazolidinone chiral auxiliaries for one asymmetric alkylation reaction and four asymmetric aldol reactions, setting the absolute stereochemistry of nine stereocenters. A typical auxiliary-guided stereoselective transformation involves three steps: first, the auxiliary is covalently coupled to the substrate; second, the resulting compound undergoes one or more diastereoselective transformations; and finally, the auxiliary is removed under conditions that do not cause racemization of the desired products. The cost of employing stoichiometric auxiliary and the need to spend synthetic steps appending and removing the auxiliary make this approach appear inefficient. However, for many transformations, the only available stereoselective methodology relies on chiral auxiliaries.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CH-335: Asymmetric synthesis and retrosynthesis
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
CH-435: Asymmetric catalysis for fine chemicals synthesis
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
CH-233: Organic functions and reactions I
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
Concepts associés (3)
Spécificité et sélectivité
En chimie, une réaction est spécifique si le résultat dépend du réactif, soit parce que la nature du produit en découlera, soit parce que le mécanisme nécessite un arrangement particulier des atomes impliqués, donnant un produit particulier, sans quoi il ne fonctionnera pas. En opposition, une réaction est sélective s'il y a prépondérance d'un seul produit entre plusieurs produits rendus possibles par un même mécanisme (qui sera donc non spécifique), ou résultant de plusieurs mécanismes, spécifiques ou non, en compétition.
Aldolisation
L'aldolisation (appelée aussi cétolisation dans le cadre des cétones) est une réaction de formation de liaisons carbone-carbone importante en chimie organique. Elle implique généralement l'addition nucléophile d'un énolate sur un aldéhyde (ou une cétone), pour former une β-hydroxycétone ou aldol (aldehyde + alcool), une unité structurale présente dans de nombreuses molécules naturelles et médicaments. Parfois, le produit de l'addition aldolique perd une molécule d'eau durant la réaction, pour former une cétone α,β-insaturée.
Synthèse asymétrique
vignette|Structure chimique de BINAP La synthèse asymétrique consiste à préparer un produit sous forme d'un énantiomère en partant d'une matière première achirale. Cette transformation nécessite l'ajout d'un composé chiral qui est temporairement lié au substrat, à un réactif ou à un catalyseur. Les principaux types de synthèse asymétrique sont les synthèses : diastéréosélective énantiosélective stœchiométrique catalytique Spécificité et sélectivité Effets non linéaires en catalyse asymétrique Catégorie:Stér

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.