Summary
Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit. Celsius, Kelvin, and Fahrenheit are common temperature scales. Other scales used throughout history include Rankine, Rømer, Newton, Delisle, Réaumur, Gas mark, Leiden and Wedgwood. The zeroth law of thermodynamics describes thermal equilibrium between thermodynamic systems in form of an equivalence relation. Accordingly, all thermal systems may be divided into a quotient set, denoted as M. If the set M has the cardinality of c, then one can construct an injective function f : M → R, by which every thermal system has a parameter associated with it such that when two thermal systems have the same value of that parameter, they are in thermal equilibrium. This parameter is the property of temperature. The specific way of assigning numerical values for temperature is establishing a scale of temperature. In practical terms, a temperature scale is always based on usually a single physical property of a simple thermodynamic system, called a thermometer, that defines a scaling function for mapping the temperature to the measurable thermometric parameter. Such temperature scales that are purely based on measurement are called empirical temperature scales. The second law of thermodynamics provides a fundamental, natural definition of thermodynamic temperature starting with a null point of absolute zero. A scale for thermodynamic temperature is established similarly to the empirical temperature scales, however, needing only one additional fixing point. Empirical scales are based on the measurement of physical parameters that express the property of interest to be measured through some formal, most commonly a simple linear, functional relationship.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.