Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics.
The concept was introduced by Max Born (1909), who gave a detailed description of the case of constant proper acceleration which he called hyperbolic motion. When subsequent authors such as Paul Ehrenfest (1909) tried to incorporate rotational motions as well, it became clear that Born rigidity is a very restrictive sense of rigidity, leading to the Herglotz–Noether theorem, according to which there are severe restrictions on rotational Born rigid motions. It was formulated by Gustav Herglotz (1909, who classified all forms of rotational motions) and in a less general way by Fritz Noether (1909). As a result, Born (1910) and others gave alternative, less restrictive definitions of rigidity.
Born rigidity is satisfied if the orthogonal spacetime distance between infinitesimally separated curves or worldlines is constant, or equivalently, if the length of the rigid body in momentary co-moving inertial frames measured by standard measuring rods (i.e. the proper length) is constant and is therefore subjected to Lorentz contraction in relatively moving frames. Born rigidity is a constraint on the motion of an extended body, achieved by careful application of forces to different parts of the body. A body rigid in itself would violate special relativity, as its speed of sound would be infinite.
A classification of all possible Born rigid motions can be obtained using the Herglotz–Noether theorem. This theorem states, that all irrotational Born rigid motions (class A) consist of hyperplanes rigidly moving through spacetime, while any rotational Born rigid motion (class B) must be isometric Killing motions. This implies that a Born rigid body only has three degrees of freedom. Thus a body can be brought in a Born rigid way from rest into any translational motion, but it cannot be brought in a Born rigid way from rest into rotational motion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S.
In relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk rigidly rotating at relativistic speeds, so called Langevin observers. This chart is often attributed to Max Born, due to his 1909 work on the relativistic physics of a rotating body. For overview of the application of accelerations in flat spacetime, see Acceleration (special relativity) and proper reference frame (flat spacetime).
In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 po ...
Closed-form solutions are traditionally used in computer vision for estimating rigid body transformations. Here we suggest an iterative solution for estimating rigid body transformations and prove its global convergence. We show that for a number of applic ...
Springer Verlag2012
An assembly refers to a collection of parts joined together to achieve a specific form and/or functionality. Assemblies make it possible to fabricate large and complex objects with several small and simple parts. Such parts can be assembled and disassemble ...