Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.
The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin com-plexus, meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek sym-plektikos (συμπλεκτικός); in both cases the stem comes from the Indo-European root *pleḱ- The name reflects the deep connections between complex and symplectic structures.
By Darboux's Theorem, symplectic manifolds are isomorphic to the standard symplectic vector space locally, hence only have global (topological) invariants. "Symplectic topology," which studies global properties of symplectic manifolds, is often used interchangeably with "symplectic geometry."
A symplectic geometry is defined on a smooth even-dimensional space that is a differentiable manifold. On this space is defined a geometric object, the symplectic 2-form, that allows for the measurement of sizes of two-dimensional objects in the space. The symplectic form in symplectic geometry plays a role analogous to that of the metric tensor in Riemannian geometry. Where the metric tensor measures lengths and angles, the symplectic form measures oriented areas.
Symplectic geometry arose from the study of classical mechanics and an example of a symplectic structure is the motion of an object in one dimension. To specify the trajectory of the object, one requires both the position q and the momentum p, which form a point (p,q) in the Euclidean plane R2. In this case, the symplectic form is
and is an area form that measures the area A of a region S in the plane through integration:
The area is important because as conservative dynamical systems evolve in time, this area is invariant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La géométrie riemannienne est un (peut-être le) chapitre central de la géométrie différentielle et de la géométriec ontemporaine en général. Le sujet est très riche et ce cours est une modeste introdu
Après avoir traité la théorie de base des courbes et surfaces dans le plan et l'espace euclidien,
nous étudierons certains chapitres choisis : surfaces minimales, surfaces à courbure moyenne constante
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
Related concepts (18)
Explores molecular dynamics, integrating Newton's equations to make atoms move according to interatomic forces.
Explores practical applications in nonlinear dynamics, emphasizing symplectic integration methods and thin lens approximations for accurate computations in accelerator physics.
Introduces the Riemannian Trust Regions (RTR) framework, covering conjugate directions, Newton's method, and model improvement.
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation. A diffeomorphism between two symplectic manifolds is called a symplectomorphism if where is the pullback of . The symplectic diffeomorphisms from to are a (pseudo-)group, called the symplectomorphism group (see below).
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds.
In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux who established it as the solution of the Pfaff problem. It is a foundational result in several fields, the chief among them being symplectic geometry. Indeed, one of its many consequences is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another.
Among the single-trajectory Gaussian-based methods for solving the time-dependent Schrödinger equation, the variational Gaussian approximation is the most accurate one. In contrast to Heller’s original thawed Gaussian approximation, it is symplectic, conse ...
2023
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
2022
Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...